完整後設資料紀錄
DC 欄位語言
dc.contributor.authorEmura, Takeshien_US
dc.contributor.authorWang, Weijingen_US
dc.date.accessioned2017-04-21T06:55:12Z-
dc.date.available2017-04-21T06:55:12Z-
dc.date.issued2016-10en_US
dc.identifier.issn0020-3157en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10463-015-0526-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/134216-
dc.description.abstractTruncated data are commonly seen in studies of biomedicine, epidemiology, astronomy and econometrics. Existing regression methods for analyzing left-truncated and right-censored data have been developed under the assumption that the lifetime variable of interest is independent of both truncation and censoring variables. In this article, we propose a semiparametric accelerated failure time model that incorporates both covariates and the truncation variable as regressors. The proposed model utilizes the truncation information in statistical modeling and hence allows for dependent truncation. For estimation, we develop a set of estimating equations constructed from the log-rank and quasi-independence test statistics. We show that the resulting estimators are consistent and asymptotically normal. We also propose an explicit formula for variance estimation based on a kernel method. Finite-sample performances of the estimators are studied by simulations. The proposed methodology is applied to analyze a real data for illustration.en_US
dc.language.isoen_USen_US
dc.subjectBiased samplingen_US
dc.subjectCensored regressionen_US
dc.subjectLeft truncationen_US
dc.subjectLog-rank testen_US
dc.subjectProduct-limit estimatoren_US
dc.subjectQuasi-independenceen_US
dc.subjectSurvival analysisen_US
dc.titleSemiparametric inference for an accelerated failure time model with dependent truncationen_US
dc.identifier.doi10.1007/s10463-015-0526-9en_US
dc.identifier.journalANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICSen_US
dc.citation.volume68en_US
dc.citation.issue5en_US
dc.citation.spage1073en_US
dc.citation.epage1094en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000382007400007en_US
顯示於類別:期刊論文