完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Wen-Hsiangen_US
dc.contributor.authorChen, Li-Deen_US
dc.contributor.authorLin, Chien-Hsuehen_US
dc.contributor.authorMu, Szu-Pangen_US
dc.contributor.authorChao, Mango C. -T.en_US
dc.contributor.authorTsai, Cheng-Hongen_US
dc.contributor.authorChiu, Yen-Chihen_US
dc.date.accessioned2017-04-21T06:50:13Z-
dc.date.available2017-04-21T06:50:13Z-
dc.date.issued2016en_US
dc.identifier.isbn978-1-4503-4039-7en_US
dc.identifier.urihttp://dx.doi.org/10.1145/2872334.2872353en_US
dc.identifier.urihttp://hdl.handle.net/11536/134345-
dc.description.abstractAs technology node keeps scaling and design complexity keeps increasing, power distribution networks (PDNs) require more routing resource to meet IR-drop and EM constraints. This paper presents a design flow to generate a PDN that can result in minimal overhead for the routing of the underlying standard cells while satisfying both IR-drop and EM constraints based on a given cell placement. The design flow relies on a machine-learning model to quickly predict the total wire length of global route associated with a given PDN configuration in order to speed up the search process. The experimental results based on various 28nm industrial block designs have demonstrated the accuracy of the learned model for predicting the routing cost and the effectiveness of the proposed framework for reducing the routing cost of the final PDN.en_US
dc.language.isoen_USen_US
dc.titleGenerating Routing-Driven Power Distribution Networks with Machine-Learning Techniqueen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1145/2872334.2872353en_US
dc.identifier.journalPROCEEDINGS OF THE 2016 INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN (ISPD'16)en_US
dc.citation.spage145en_US
dc.citation.epage152en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000390596000029en_US
dc.citation.woscount0en_US
顯示於類別:會議論文