完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, CFen_US
dc.contributor.authorTzeng, GHen_US
dc.contributor.authorWang, SYen_US
dc.date.accessioned2014-12-08T15:18:41Z-
dc.date.available2014-12-08T15:18:41Z-
dc.date.issued2005-08-01en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2005.04.006en_US
dc.identifier.urihttp://hdl.handle.net/11536/13436-
dc.description.abstractThe Black-Scholes Option pricing model (OPM) developed in 1973 has always been taken as the cornerstone of option pricing model. The generic applications of such a model are always restricted by its nature of not being suitable for fuzzy environment since the decision-making problems occurring in the area of option pricing are always with a feature of uncertainty. When an investor faces an option-pricing problem, the outcomes of the primary variables depend on the investor's estimation. It means that a person's deduction and thinking process uses a non-binary logic with fuzziness. Unfortunately, the traditional probabilistic B-S model does not consider fuzziness to deal with the aforementioned problems. The purpose of this study is to adopt the fuzzy decision theory and Bayes' rule as a base for measuring fuzziness in the practice of option analysis. This study also employs 'Fuzzy Decision Space' consisting of four dimensions, i.e. fuzzy state; fuzzy sample information, fuzzy action and evaluation function to describe the decision of investors, which is used to derive a fuzzy B-S OPM under fuzzy environment. Finally, this study finds that the over-estimation exists in the value of risk interest rate, the expected value of variation stock price, and in the value of the call price of in the money and at the money, but under-estimation exists in the value of the call price of out of the money without a consideration of the fuzziness. (C) 2005 Elsevier Ltd. All fights reserved.en_US
dc.language.isoen_USen_US
dc.subjectBlack-Scholesen_US
dc.subjectoption pricing modelen_US
dc.subjectfuzzy set theoryen_US
dc.subjectfuzzy decision spaceen_US
dc.titleA new application of fuzzy set theory to the Black-Scholes option pricing modelen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2005.04.006en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume29en_US
dc.citation.issue2en_US
dc.citation.spage330en_US
dc.citation.epage342en_US
dc.contributor.department科技管理研究所zh_TW
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentInstitute of Management of Technologyen_US
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000230947400010-
dc.citation.woscount25-
顯示於類別:期刊論文


文件中的檔案:

  1. 000230947400010.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。