完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, HDen_US
dc.contributor.authorLee, TYen_US
dc.contributor.authorTzeng, SWen_US
dc.contributor.authorWu, LCen_US
dc.contributor.authorHorng, JTen_US
dc.contributor.authorTsou, APen_US
dc.contributor.authorHuang, KTen_US
dc.date.accessioned2014-12-08T15:18:44Z-
dc.date.available2014-12-08T15:18:44Z-
dc.date.issued2005-07-30en_US
dc.identifier.issn0192-8651en_US
dc.identifier.urihttp://dx.doi.org/10.1002/jcc.20235en_US
dc.identifier.urihttp://hdl.handle.net/11536/13467-
dc.description.abstractProtein phosphorylation, which is an important mechanism in posttranslational modification, affects essential cellular processes such as metabolism, cell signaling, differentiation, and membrane transportation. Proteins are phosphorylated by a variety of protein kinases. In this investigation, we develop a novel tool to computationally predict catalytic kinase-specific phosphorylation sites. The known phosphorylation sites from public domain data sources are categorized by their annotated protein kinases. Based on the concepts of profile Hidden Markov Models (HMM), computational models are trained from the kinase-specific groups of phosphorylation sites. After evaluating the trained models, we select the model with highest accuracy in each kinase-specific group and provide a Web-based prediction tool for identifying protein phosphorylation sites. The main contribution here is that we have developed a kinase-specific phosphorylation site prediction tool with both high sensitivity and specificity. (c) 2005 Wiley Periodicals, Inc.en_US
dc.language.isoen_USen_US
dc.subjectphosphorylationen_US
dc.subjectprotein kinaseen_US
dc.subjectprofile hidden Markov modelen_US
dc.titleIncorporating hidden Markov models for identifying protein kinase-specific phosphorylation sitesen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/jcc.20235en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL CHEMISTRYen_US
dc.citation.volume26en_US
dc.citation.issue10en_US
dc.citation.spage1032en_US
dc.citation.epage1041en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000229702900007-
dc.citation.woscount31-
顯示於類別:期刊論文


文件中的檔案:

  1. 000229702900007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。