Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Ming-Zeen_US
dc.contributor.authorPing-Wang, Poen_US
dc.contributor.authorTang, Kea-Tiongen_US
dc.contributor.authorFang, Wai-Chien_US
dc.date.accessioned2017-04-21T06:49:40Z-
dc.date.available2017-04-21T06:49:40Z-
dc.date.issued2009en_US
dc.identifier.isbn978-1-4244-4292-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/134952-
dc.description.abstractThis paper presents a biologically inspired "integrate-and-fire (I&F) neuron" which has multiple input dendrites for adaptive weight storage. By using a capacitor-free integrator, longer time constant and smaller chip area can be achieved. A low-power Schmitt Trigger is used to implement the feedback loop to achieve smaller power consumption. Weights are stored by using floating gate MOS transistors as nonvolatile analog memory. Simulation results show that this I&F neuron can be utilized in an analog VLSI neural network system.en_US
dc.language.isoen_USen_US
dc.titleMulti-input Silicon Neuron with Weighting Adaptationen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2009 IEEE/NIH LIFE SCIENCE SYSTEMS AND APPLICATIONS WORKSHOPen_US
dc.citation.spage194en_US
dc.citation.epage+en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000268062300051en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper