標題: Stability Analysis of Autonomous Ratio-Memory Cellular Nonlinear Networks for Pattern Recognition
作者: Tsai, Su-Yung
Wang, Chi-Hsu
Wu, Chung-Yu
電子工程學系及電子研究所
Department of Electronics Engineering and Institute of Electronics
關鍵字: Cellular nonlinear network (CNN);domain of attraction (DOA);Lyapunov stability;ratio memory (RM);Hebbian learning rule
公開日期: 1-八月-2010
摘要: The stability analysis via the Lyapunov theorem for Autonomous Ratio-Memory Cellular Nonlinear Networks (ARMCNNs) is proposed. A conservative domain of attraction (DOA) is found from the stability analysis through a graphical method without complicated numerical analysis. The stability analysis shows that ARMCNNs can tolerate large ratio weight variations. This paper also presents the ARMCNN with self-feedback (SARMCNN) to overcome the problem of isolated neurons due to low correlation between neighboring neurons. The SARMCNN recognition rate (RR) is compared with other CNN constructed via the singular value decomposition technique (SVD-CNN).
URI: http://dx.doi.org/10.1109/TCSI.2009.2037450
http://hdl.handle.net/11536/32333
ISSN: 1549-8328
DOI: 10.1109/TCSI.2009.2037450
期刊: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS
Volume: 57
Issue: 8
起始頁: 2156
結束頁: 2167
顯示於類別:期刊論文


文件中的檔案:

  1. 000282987200031.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。