完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, Su-Yungen_US
dc.contributor.authorWang, Chi-Hsuen_US
dc.contributor.authorWu, Chung-Yuen_US
dc.date.accessioned2014-12-08T15:48:37Z-
dc.date.available2014-12-08T15:48:37Z-
dc.date.issued2010-08-01en_US
dc.identifier.issn1549-8328en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TCSI.2009.2037450en_US
dc.identifier.urihttp://hdl.handle.net/11536/32333-
dc.description.abstractThe stability analysis via the Lyapunov theorem for Autonomous Ratio-Memory Cellular Nonlinear Networks (ARMCNNs) is proposed. A conservative domain of attraction (DOA) is found from the stability analysis through a graphical method without complicated numerical analysis. The stability analysis shows that ARMCNNs can tolerate large ratio weight variations. This paper also presents the ARMCNN with self-feedback (SARMCNN) to overcome the problem of isolated neurons due to low correlation between neighboring neurons. The SARMCNN recognition rate (RR) is compared with other CNN constructed via the singular value decomposition technique (SVD-CNN).en_US
dc.language.isoen_USen_US
dc.subjectCellular nonlinear network (CNN)en_US
dc.subjectdomain of attraction (DOA)en_US
dc.subjectLyapunov stabilityen_US
dc.subjectratio memory (RM)en_US
dc.subjectHebbian learning ruleen_US
dc.titleStability Analysis of Autonomous Ratio-Memory Cellular Nonlinear Networks for Pattern Recognitionen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TCSI.2009.2037450en_US
dc.identifier.journalIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERSen_US
dc.citation.volume57en_US
dc.citation.issue8en_US
dc.citation.spage2156en_US
dc.citation.epage2167en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000282987200031-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000282987200031.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。