完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Yi-Chengen_US
dc.contributor.authorPeng, Wen-Chihen_US
dc.contributor.authorLee, Wang-Chienen_US
dc.date.accessioned2017-04-21T06:50:16Z-
dc.date.available2017-04-21T06:50:16Z-
dc.date.issued2013en_US
dc.identifier.isbn978-0-7695-5109-8en_US
dc.identifier.issn2375-9232en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ICDMW.2013.15en_US
dc.identifier.urihttp://hdl.handle.net/11536/135355-
dc.description.abstractOwing to the great advent of sensor technology, the usage data of appliances in a house can be logged and collected easily today. However, it is a challenge for the residents to visualize how these appliances are used. Thus, mining algorithms are much needed to discover appliance usage patterns. Most previous studies on usage pattern discovery are mainly focused on analyzing the patterns of single appliance rather than mining the usage correlation among appliances. In this paper, a novel system, namely, Correlation Pattern Mining System (CPMS), is developed to capture the usage patterns and correlations among appliances. With several new optimization techniques, CPMS can reduce the search space effectively and efficiently. Furthermore, the proposed algorithm is applied on a real-world dataset to show the practicability of correlation pattern mining.en_US
dc.language.isoen_USen_US
dc.subjectcorrelation patternen_US
dc.subjectsmart homeen_US
dc.subjectsequential patternen_US
dc.subjecttime interval-based dataen_US
dc.subjectusage representationen_US
dc.titleA Novel System for Extracting Useful Correlation in Smart Home Environmenten_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ICDMW.2013.15en_US
dc.identifier.journal2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW)en_US
dc.citation.spage357en_US
dc.citation.epage364en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000343602800047en_US
dc.citation.woscount3en_US
顯示於類別:會議論文