標題: | Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems |
作者: | Leu, YG Wang, WY Lee, TT 電控工程研究所 Institute of Electrical and Control Engineering |
關鍵字: | direct adaptive control;fuzzy-neural control;nonaffine nonlinear systems;output feedback control |
公開日期: | 1-七月-2005 |
摘要: | In this paper, an observer-based direct adaptive fuzzy-neural control scheme is presented for nonaffine nonlinear systems in the presence of unknown structure of nonlinearities. A direct adaptive fuzzy-neural controller and a class of generalized nonlinear systems, which are called nonaffine nonlinear systems, are instead of the indirect one and affine nonlinear systems given by Leu et al. By using implicit function theorem and Taylor series expansion, the observer-based control law and the weight update law of the fuzzy-neural controller are derived for the nonaffine nonlinear systems. Based on strictly-positive-real (SPR) Lyapunov theory, the stability of the closed-loop system can be verified. Moreover, the overall adaptive scheme guarantees that all signals involved are bounded and the output of the closed-loop system will asymptotically track the desired output trajectory. To demonstrate the effectiveness of the proposed method, simulation results are illustrated in this paper. |
URI: | http://dx.doi.org/10.1109/TNN.2005.849824 http://hdl.handle.net/11536/13544 |
ISSN: | 1045-9227 |
DOI: | 10.1109/TNN.2005.849824 |
期刊: | IEEE TRANSACTIONS ON NEURAL NETWORKS |
Volume: | 16 |
Issue: | 4 |
起始頁: | 853 |
結束頁: | 861 |
顯示於類別: | 期刊論文 |