完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKuo, Yu-Hsinen_US
dc.contributor.authorPeng, Huan-Kaien_US
dc.contributor.authorWen, Charles H. -P.en_US
dc.date.accessioned2017-04-21T06:48:38Z-
dc.date.available2017-04-21T06:48:38Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-6455-5en_US
dc.identifier.issn1948-3287en_US
dc.identifier.urihttp://hdl.handle.net/11536/135596-
dc.description.abstractFor CMOS designs in sub 90nm technologies, statistical methods are necessary to accurately estimate circuit SER considering process variations. However, due to the lack of quality statistical models, current statistical SER (SSER) frameworks have not yet achieved satisfactory accuracy. In this work, we present accurate table-based cell models, based on which a Monte Carlo SSER analysis framework is built. We further propose a heuristic to customize the use of quasirandom sequences, which successfully speeds up the convergence of simulation error and hence shortens the runtime. Experimental results show that this framework is capable of more precisely estimating circuit SSERs with reasonable speed.en_US
dc.language.isoen_USen_US
dc.titleAccurate Statistical Soft Error Rate (SSER) Analysis Using A Quasi-Monte Carlo Framework With Quality Cell Modelsen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED 2010)en_US
dc.citation.spage831en_US
dc.citation.epage838en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000393299700122en_US
dc.citation.woscount2en_US
顯示於類別:會議論文