完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Harry H.en_US
dc.contributor.authorKuo, Shih-Huaen_US
dc.contributor.authorTung, Jonathanen_US
dc.contributor.authorChao, Mango C. -T.en_US
dc.date.accessioned2017-04-21T06:49:26Z-
dc.date.available2017-04-21T06:49:26Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4799-7597-6en_US
dc.identifier.issn1093-0167en_US
dc.identifier.urihttp://hdl.handle.net/11536/135804-
dc.description.abstractIn this paper we describe a novel scheme for collecting and analyzing a chip\'s failure signature. Incorrect outputs of digital chips are forced by applying scan patterns under non-destructive stress conditions. From binary mismatch responses collected in continue-on-fail mode, numeric data features are formed by grouping and counting mismatches in each group, thus defining a chip\'s "analog" failure signature. We use machine learning to explore prediction models of system-level test (SLT) failures by comparing signatures of chip samples from known SLT pass/fail bins. Important features that clearly separate the SLT pass/fail chips are identified. Experimental results are presented for a 28-nm 1.2-GHz quad-core low-power processor.en_US
dc.language.isoen_USen_US
dc.titleStatistical Techniques for Predicting System-Level Failure using Stress-Test Dataen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2015 IEEE 33RD VLSI TEST SYMPOSIUM (VTS)en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000380437500014en_US
dc.citation.woscount0en_US
顯示於類別:會議論文