完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsieh, Chi-Tien_US
dc.contributor.authorHsieh, Tung-Hanen_US
dc.contributor.authorChang, Shu-Weien_US
dc.date.accessioned2019-04-03T06:47:58Z-
dc.date.available2019-04-03T06:47:58Z-
dc.date.issued2016-01-01en_US
dc.identifier.isbn978-1-62841-977-1en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://dx.doi.org/10.1117/12.2211679en_US
dc.identifier.urihttp://hdl.handle.net/11536/135908-
dc.description.abstractThe spatial discontinuity of physical parameters at an abrupt interface may increase numerical errors when solving partial differential equations. Rather than generating boundary-adapted meshes for objects with complicated geometry in the finite-element method, the subpixel smoothing (SPS) replaces discontinuous parameters inside square elements that are bisected by interfaces in, for example, the finite-difference (FD) method, with homogeneous counterparts and matches physical boundary conditions therein. In this work, we apply the idea of SPS to the eight-band effective-mass Luttinger-Kohn (LK) and Burt-Foreman (BF) Hamiltonians of semiconductor nanostructures. Two smoothing approaches are proposed. One stems from eliminations of the first-order perturbation in energy, and the other is an application of the Hellmann-Feynman (HF) theorem. We employ the FD method to numerically solve the eigenvalue problem corresponding to the multiband Schrodinger's equation for circular quantum wires (QWRs). The eigenenergies and envelope (wave) functions for valence and conduction states in III-V circular QWRs are examined. We find that while the procedure of perturbation theory seems to have the better accuracy than that of HF theorem, the errors of both schemes are considerably lower than that without smoothing or with direct but unjustified averages of parameters. On the other hand, even in the presence of SPS, the numerical results for the LK Hamiltonian of nanostructures could still contain nonphysical spurious solutions with extremely localized states near heterostructure interfaces. The proper operator ordering embedded in the BF Hamiltonian mitigates this problem. The proposed approaches may improve numerical accuracies and reduce computational cost for the modeling of nanostructures in optoelectronic devices.en_US
dc.language.isoen_USen_US
dc.subjectSubpixel smoothingen_US
dc.subjectmultiband k.p methoden_US
dc.subjectfirst-order perturbationen_US
dc.subjectHellmann-Feynman theoremen_US
dc.subjectquantum wiresen_US
dc.titleEnhancing accuracy with subpixel smoothing for multiband effective-mass Hamiltonians of semiconductor nanostructuresen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1117/12.2211679en_US
dc.identifier.journalPHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXIVen_US
dc.citation.volume9742en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000381930800035en_US
dc.citation.woscount0en_US
顯示於類別:會議論文


文件中的檔案:

  1. e38956ee4758096821e7301090990a43.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。