完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Lung-Pinen_US
dc.contributor.authorWu, I-Chenen_US
dc.contributor.authorLiang, Geng-Zeen_US
dc.date.accessioned2017-04-21T06:48:21Z-
dc.date.available2017-04-21T06:48:21Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4673-9606-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/135998-
dc.description.abstractDue to the complex scheduling criteria, resource fragmentation often occurs in modern high performance computing systems. This paper addresses both of the policy and technical issues of using unstable resources formed by fragmentation. We propose that the parallel Monte-Carlo tree search (MCTS) can be implemented as lightweight single-core tasks to adapt to the unstable fractured resources. We develop a broker to collect idle resources in a high performance render farm and make use of them to execute MCTS tasks. The broker tends to assign promising tree nodes to reliable and responsive processors to confirm best-first search. Our work demonstrates a successful integration in which the MCTS computation gains significant resources without interfering with the render farm tasks.en_US
dc.language.isoen_USen_US
dc.subjectparallel game tree searchen_US
dc.subjectrender farmen_US
dc.subjectschedulingen_US
dc.titleEnhancing Parallel Game-Tree Searches by using Idle Resources of a High Performance Render Farmen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2015 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI)en_US
dc.citation.spage461en_US
dc.citation.epage466en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000380406200063en_US
dc.citation.woscount0en_US
顯示於類別:會議論文