標題: | MULTIPLE-KERNEL ADAPTIVE SEGMENTATION AND TRACKING (MAST) FOR ROBUST OBJECT TRACKING |
作者: | Tang, Zheng Hwang, Jenq-Neng Lin, Yen-Shuo Chuang, Jen-Hui 資訊工程學系 Department of Computer Science |
關鍵字: | Adaptive Segmentation;Object Tracking;Multiple Kernels;Background Subtraction;Shadow Removal |
公開日期: | 2016 |
摘要: | In a video surveillance system with static cameras, object segmentation often fails when part of the object has similar color with the background, resulting in poor performance of the subsequent object tracking. Multiple kernels have been utilized in object tracking to deal with occlusion, but the performance still highly depends on segmentation. This paper presents an innovative system, named Multiple-kernel Adaptive Segmentation and Tracking (MAST), which dynamically controls the decision thresholds of background subtraction and shadow removal around the adaptive kernel regions based on the preliminary tracking results. Then the objects are tracked for the second time according to the adaptively segmented foreground. Evaluations of both segmentation and tracking on benchmark datasets and our own recorded video sequences demonstrate that the proposed method can successfully track objects in similar-color background and/or shadow areas with favorable segmentation performance. |
URI: | http://hdl.handle.net/11536/136360 |
ISBN: | 978-1-4799-9988-0 |
ISSN: | 1520-6149 |
期刊: | 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS |
起始頁: | 1115 |
結束頁: | 1119 |
顯示於類別: | 會議論文 |