Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Xiao-Longen_US
dc.contributor.authorZhang, Xue-Baien_US
dc.contributor.authorChao, Hsiangen_US
dc.contributor.authorYuan, Shyan-Mingen_US
dc.date.accessioned2017-04-21T06:49:07Z-
dc.date.available2017-04-21T06:49:07Z-
dc.date.issued2016en_US
dc.identifier.isbn978-3-319-45834-2en_US
dc.identifier.isbn978-3-319-45835-9en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-45835-9_9en_US
dc.identifier.urihttp://hdl.handle.net/11536/136414-
dc.description.abstractCurrently, providers of Software as a service (SaaS) can use Infrastructure as a Service (IaaS) to obtain the resources required for serving customers. Performance problems in a SaaS system are difficult to diagnose, because they may be caused by various system components. This study proposes a knee point-driven bottleneck detection algorithm, the specific resource bottleneck in the target system can be detected by analyzing the collected metrics. The detection result provides a scale up recommendation for the service provider to facilitate reconfiguring the service system. The experimental results revealed that the proposed system can detect a potential bottleneck in a service system accurately. After solving the detected bottleneck the performance of the target cloud service can be improved efficiently.en_US
dc.language.isoen_USen_US
dc.subjectBottleneck detectionen_US
dc.subjectKnee pointen_US
dc.subjectCloud testingen_US
dc.subjectResource allocationen_US
dc.titleKnee Point-Driven Bottleneck Detection Algorithm for Cloud Service Systemen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-319-45835-9_9en_US
dc.identifier.journalWeb Technologies and Applications: APWeb 2016 Workshops, WDMA, GAP, and SDMAen_US
dc.citation.volume9865en_US
dc.citation.spage102en_US
dc.citation.epage111en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000389501900009en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper