完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, CYen_US
dc.contributor.authorSong, KTen_US
dc.date.accessioned2019-04-03T06:47:22Z-
dc.date.available2019-04-03T06:47:22Z-
dc.date.issued2006-01-01en_US
dc.identifier.isbn0-8194-6109-1en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://dx.doi.org/10.1117/12.639890en_US
dc.identifier.urihttp://hdl.handle.net/11536/136531-
dc.description.abstractA novel heterogeneity-projection hard-decision adaptive interpolation (HPHD-AI) algorithm is proposed in this paper for color reproduction from Bayer mosaic images. The proposed algorithm aims to estimate the optimal interpolation direction and perform hard-decision interpolation, in which the decision is made before interpolation. To do so, a new heterogeneity-projection scheme based on spectral-spatial correlation is proposed to decide the best interpolation direction from the original mosaic image directly. Exploiting the proposed heterogeneity-projection scheme, a hard-decision rule can be designed easily to perform the interpolation. We have compared this technique with three recently proposed demosaicing techniques: Lu's, Gunturk's and Li's methods, by utilizing twenty-five natural images from Kodak PhotoCD. The experimental results show that HPHD-AI outperforms all of them in both PSNR values and S-CIELab Delta E-ab* measures.en_US
dc.language.isoen_USen_US
dc.subjectcolor reproductionen_US
dc.subjectCFA demosaicingen_US
dc.subjectcolor artifactsen_US
dc.subjectadaptive filteringen_US
dc.subjectdigital camerasen_US
dc.titleDemosaicing: Heterogeneity-projection hard-decision adaptive interpolation using spectral-spatial correlationen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1117/12.639890en_US
dc.identifier.journalDIGITAL PHOTOGRAPHY IIen_US
dc.citation.volume6069en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000236912000006en_US
dc.citation.woscount0en_US
顯示於類別:會議論文


文件中的檔案:

  1. a02c879bdce0577b132c71b716f9ee62.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。