Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuah, MKen_US
dc.date.accessioned2014-12-08T15:19:03Z-
dc.date.available2014-12-08T15:19:03Z-
dc.date.issued2005-06-01en_US
dc.identifier.issn0024-6093en_US
dc.identifier.urihttp://dx.doi.org/10.1112/S0024609305004364en_US
dc.identifier.urihttp://hdl.handle.net/11536/13681-
dc.description.abstractSymplectic induction was first introduced by Weinstein as the symplectic analogue of induced representations, and was further developed by Guillemin and Sternberg. This paper deals with the case where the symplectic manifold in question is a semisimple coadjoint orbit of a Lie group. In this case, the construction is generalized by adding a smooth mapping, in order to obtain various symplectic forms. In particular, when the orbit is elliptic, a study of the complex geometry shows that quantization commutes with induction.en_US
dc.language.isoen_USen_US
dc.titleSymplectic induction and semisimple orbitsen_US
dc.typeArticleen_US
dc.identifier.doi10.1112/S0024609305004364en_US
dc.identifier.journalBULLETIN OF THE LONDON MATHEMATICAL SOCIETYen_US
dc.citation.volume37en_US
dc.citation.issueen_US
dc.citation.spage446en_US
dc.citation.epage458en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000230071800015-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000230071800015.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.