完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLai, MCen_US
dc.contributor.authorLiu, HCen_US
dc.date.accessioned2014-12-08T15:19:07Z-
dc.date.available2014-12-08T15:19:07Z-
dc.date.issued2005-05-25en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.amc.2004.04.064en_US
dc.identifier.urihttp://hdl.handle.net/11536/13699-
dc.description.abstractWe develop a simple and efficient FFT-based fast direct solver for the biharmonic equation on a disk. The biharmonic equation is split into a coupled system of harmonic problems. We first use the truncated Fourier series expansion to derive a set of coupled singular ODEs, then we solve those singular equations by second-order finite difference discretizations. Using a radial grid with shifting a half mesh away from the origin, we can handle the coordinate singularity easily without pole conditions. The Sherman-Morrison formula is then applied to solve the resultant linear system in a cost-efficient way. The computational complexity of the method consists of O(MN log(2) N) arithmetic operations for M x N grid points. The numerical accuracy check and some applications to the incompressible Navier-Stokes flows inside a disk are conducted. (c) 2004 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectbiharmonic equationen_US
dc.subjectpolar coordinatesen_US
dc.subjectSherman-Morrison formulaen_US
dc.subjectFFTen_US
dc.subjectvorticity stream function formulationen_US
dc.titleFast direct solver for the biharmonic equation on a disk and its application to incompressible flowsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2004.04.064en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume164en_US
dc.citation.issue3en_US
dc.citation.spage679en_US
dc.citation.epage695en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000228871500003-
dc.citation.woscount4-
顯示於類別:期刊論文


文件中的檔案:

  1. 000228871500003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。