Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, CYen_US
dc.contributor.authorShih, CWen_US
dc.date.accessioned2014-12-08T15:19:09Z-
dc.date.available2014-12-08T15:19:09Z-
dc.date.issued2005-05-15en_US
dc.identifier.issn0167-2789en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.physd.2005.04.007en_US
dc.identifier.urihttp://hdl.handle.net/11536/13721-
dc.description.abstractFormation of mosaic patterns for spatially discrete diffusion equations with cubic nonlinearity is investigated. We construct feasible basic patterns in each parameter region and combine these basic patterns into large patterns on one- and two-dimensional lattices. The basic patterns are characterized and constructed through formulating parameter conditions based on a geometrical setting. Spatial entropy associated with these patterns are computed or estimated. We also consider three typical boundary conditions and investigate their influences on pattern formations and spatial entropy. Several numerical computations are performed to illustrate such a formation of patterns. (c) 2005 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectpattern formationen_US
dc.subjectspatial entropyen_US
dc.subjectspatial chaosen_US
dc.subjectlattice systemsen_US
dc.titlePattern formations and spatial entropy for spatially discrete diffusion equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.physd.2005.04.007en_US
dc.identifier.journalPHYSICA D-NONLINEAR PHENOMENAen_US
dc.citation.volume204en_US
dc.citation.issue3-4en_US
dc.citation.spage135en_US
dc.citation.epage160en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000229980500001-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000229980500001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.