完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsu, Yu-Chiaen_US
dc.contributor.authorChen, An-Pinen_US
dc.date.accessioned2014-12-08T15:02:44Z-
dc.date.available2014-12-08T15:02:44Z-
dc.date.issued2008en_US
dc.identifier.isbn978-0-7695-3407-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/1375-
dc.identifier.urihttp://dx.doi.org/10.1109/ICCIT.2008.408en_US
dc.description.abstractThe fat-tailed and leptokurtic properties observed in most financial asset return series would cause the inaccuracy of hedge ratio estimation because most traditional statistics approaches are based on the assumption of normal distribution. In this study, a novel approach is proposed using self-organizing map (SOM, also called Kohonen's Self-Organizing Feature Map) for time series data clustering and similar pattern recognition to improve the optimal hedge ratio (OHR) estimation. Five SOM-based models (considering the weight for averaging and the interval for data sampling) and two traditional models (ordinary least square method and naive hedge) were compared in Taiwan stock market hedging. The experiment demonstrates the feasibility of applying SOM, and the empirical results show that SOM approach provides a useful alternative to the OHR estimation.en_US
dc.language.isoen_USen_US
dc.titleClustering Time Series Data by SOM for the Optimal Hedge Ratio Estimationen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ICCIT.2008.408en_US
dc.identifier.journalThird 2008 International Conference on Convergence and Hybrid Information Technology, Vol 2, Proceedingsen_US
dc.citation.spage1164en_US
dc.citation.epage1169en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000262355500202-
顯示於類別:會議論文


文件中的檔案:

  1. 000262355500202.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。