| 標題: | 對模n與零同餘之K次根 The K-th Roots of Zero (mod-n) |
| 作者: | 徐松梅 S.M.Hsu |
| 公開日期: | 七月-1978 |
| 出版社: | 交大學刊編輯委員會 |
| 摘要: | Let k>0 be a positive integer. For each positive n ,let δk(n) be the largest integer such that (δk(n))^k≡0(mod n ).For any positive real number x ,let Dk(x)=∑n<x δk(n) .The purpose of this note is to investigate the order of Dk(x).The main result is the following theorem: Dk(x)/x→ξ(k*1)/ξ(k) for k>2 whereξ(s) is known as Riemann zeta function. |
| URI: | http://hdl.handle.net/11536/137615 |
| 期刊: | 交通大學學報 The Journal of National Chiao Tung University |
| Volume: | 5 |
| 起始頁: | 65 |
| 結束頁: | 67 |
| 顯示於類別: | 交通大學學報 |

