完整後設資料紀錄
DC 欄位語言
dc.contributor.author蘇建綺zh_TW
dc.contributor.author盧鴻興zh_TW
dc.contributor.authorSu, Jian-Chien_US
dc.contributor.authorLu, Horng-Shingen_US
dc.date.accessioned2018-01-24T07:35:05Z-
dc.date.available2018-01-24T07:35:05Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070352601en_US
dc.identifier.urihttp://hdl.handle.net/11536/138360-
dc.description.abstract根據監督式學習裡的支撐向量機方法,支撐向量機對於分類那些複雜的資料時是一個非常實用的方法。然而,當訓練的資料集規模屬於非常龐大的情況下,那麼此方法在訓練模型的過程中將會導致非常高的計算成本。線上學習的方法將會考慮妥善地處理這些關於記憶體的限制以及計算複雜度的相關問題。在此研究中,我們發展了一些經由線上學習的支撐向量機來處理關於多類別分類以及大數據資料的問題。我們將使用真實的通訊網路流量管理資料來評估這些方法的經驗表現。zh_TW
dc.description.abstractSupervised learning based on the method of support vector machine (SVM) is very useful for the classification of complex data. However, the computation cost is very high when the training dataset is massive. Online learning problems will need to handle the problems of memory limitation and computational complexity. In this study, the online learning methods by SVM for multiclass problems in massive data are developed. The empirical performance of these methods will be evaluated by real data in communication network traffic management.en_US
dc.language.isoen_USen_US
dc.subject監督式學習zh_TW
dc.subject支撐向量機zh_TW
dc.subject線上學習zh_TW
dc.subject多類別分類zh_TW
dc.subjectSupervised learningen_US
dc.subjectSupport vector machineen_US
dc.subjectOnline learningen_US
dc.subjectMulticlass classificationen_US
dc.title經由支撐向量機進行多類別分類的線上學習來管理通訊網路流量zh_TW
dc.titleOnline Learning by SVM for Multiclass Classification in Communication Network Traffic Managementen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
顯示於類別:畢業論文