標題: | 以基因演算法求解彈性製造工廠之製程規劃與排程問題 A Genetic Algorithm for Solving Integrated Process Planning and Scheduling Problems in Flexible Job Shops |
作者: | 林佩儀 巫木誠 Lin, Pei-Yi Wu, Muh-Cherng 工業工程與管理系所 |
關鍵字: | 製程規劃;彈性零工式排程;製程規劃與排程整合;基因演算法;基因染色體表達法;Process planning;Scheduling;Flexible Job Shop;Integrated Process Planning and Scheduling (IPPS);Genetic Algorithm;Chromosome Representation |
公開日期: | 2016 |
摘要: | 本研究探討一個建立在彈性零工式排程 (flexible job shop scheduling, FJS) 之製程規劃與排程整合 (integrated process planning and scheduling, IPPS) 問題。彈性製造工廠之製程規劃與排程問題的決策變數有三個,分別為:(1) 製程規劃指派:工件指派到哪一個製程規劃,(2) 作業指派機台:作業指派到哪一個機台上加工,(3) 作業排序:機台上的各個作業如何排序。
製程規劃與排程整合問題意指將製程規劃與排程同時進行決策,以往製程規劃與排程相互獨立進行決策,導致生產效率不佳,為對此問題進行決策,本研究提出以工件指定之製程規劃機率值,及以工件表達的作業順序所組成的兩段式基因染色體表達法,並發展基因演算法求解製程規劃與排程整合問題,不只將製程規劃與排程進行整合,解決資源上的衝突,更提升生產力。透過與Amin-Naseri et al. (2012) 進行實驗比較,實驗結果顯示,本研究所提出之新基因染色體表達法,並發展基因演算法,有91%的機率能夠有效解出彈性製造工廠之製程規劃與排程問題。 This research studies an integrated process planning and scheduling (IPPS) problem in the context of a flexible job shop (FJS). An IPPS problem denotes that the process planning problem and scheduling problem are simultaneously solved. An FJS is a job shop in which an operation can be assigned to multiple machines. The problem is herein called an IPPS-FJS problem, which includes three decisions: (1) job-to-process plan assignment, (2) operation-to-machine assignment, (3) operation-sequencing. This study proposes a new chromosome representation and proceeds to develop a genetic algorithm (GA) to solve the IPPS-FJS problem. The work of Amin-Naseri et al. (2012), the state-of-the-art in solving IPPS-FJS problem, is taken as the benchmark for justify the effectiveness of the proposed GA. Experiments reveal that the proposed GA outperforms the benchmark algorithm. |
URI: | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070353303 http://hdl.handle.net/11536/138468 |
顯示於類別: | 畢業論文 |