Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 楊哲宇 | zh_TW |
dc.contributor.author | 韓傳祥 | zh_TW |
dc.contributor.author | 李明佳 | zh_TW |
dc.contributor.author | Yang, Che-Yu | en_US |
dc.contributor.author | Han, Chuan-Hsiang | en_US |
dc.contributor.author | Li, Ming-Chia | en_US |
dc.date.accessioned | 2018-01-24T07:36:14Z | - |
dc.date.available | 2018-01-24T07:36:14Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.uri | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070352218 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/138633 | - |
dc.description.abstract | 我們將用重要抽樣法去提升投資組合風險機率計算問題的效率,利用 最小相對熵和某些限制式去決定在重要抽樣下使用的機率測度。在此篇 論文,我們考慮常態分配與學生-t 分配的兩種模型並且與Glasserman, Chan and Kroese,Scott 所提出的三種方法比較。數值結果顯示,雖然 我們的方法精準度略低,但執行我們的重要抽樣法所需的計算時間比起 來相對少很多。 | zh_TW |
dc.description.abstract | We use the importance sampling to increase the efficiency of estimating the probability of the portfolio credit risk and make use of the cross-entropy and some constraint to decide the importance sampling measure. In this thesis, we consider the normal copula and t copula and compare with Scott’s, Glasserman’s, and Chan and Kroese’s methods. From the numerical results, our importance sampling takes lesser computational time than others’ though our method losses a little accuracy. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 投資組合信用風險 | zh_TW |
dc.subject | 重要抽樣 | zh_TW |
dc.subject | 相對熵 | zh_TW |
dc.subject | 蒙地卡羅 | zh_TW |
dc.subject | 條件抽樣 | zh_TW |
dc.subject | portfolio credit risk | en_US |
dc.subject | importance sampling | en_US |
dc.subject | cross-entropy | en_US |
dc.subject | Monte Carlo method | en_US |
dc.subject | conditional sampling | en_US |
dc.title | 以相對熵的重要抽樣法計算投資組合信用風險 | zh_TW |
dc.title | Importance Sampling via The Cross-Entropy for Portfolio Credit Risk | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |