Full metadata record
DC FieldValueLanguage
dc.contributor.author楊哲宇zh_TW
dc.contributor.author韓傳祥zh_TW
dc.contributor.author李明佳zh_TW
dc.contributor.authorYang, Che-Yuen_US
dc.contributor.authorHan, Chuan-Hsiangen_US
dc.contributor.authorLi, Ming-Chiaen_US
dc.date.accessioned2018-01-24T07:36:14Z-
dc.date.available2018-01-24T07:36:14Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070352218en_US
dc.identifier.urihttp://hdl.handle.net/11536/138633-
dc.description.abstract我們將用重要抽樣法去提升投資組合風險機率計算問題的效率,利用 最小相對熵和某些限制式去決定在重要抽樣下使用的機率測度。在此篇 論文,我們考慮常態分配與學生-t 分配的兩種模型並且與Glasserman, Chan and Kroese,Scott 所提出的三種方法比較。數值結果顯示,雖然 我們的方法精準度略低,但執行我們的重要抽樣法所需的計算時間比起 來相對少很多。zh_TW
dc.description.abstractWe use the importance sampling to increase the efficiency of estimating the probability of the portfolio credit risk and make use of the cross-entropy and some constraint to decide the importance sampling measure. In this thesis, we consider the normal copula and t copula and compare with Scott’s, Glasserman’s, and Chan and Kroese’s methods. From the numerical results, our importance sampling takes lesser computational time than others’ though our method losses a little accuracy.en_US
dc.language.isoen_USen_US
dc.subject投資組合信用風險zh_TW
dc.subject重要抽樣zh_TW
dc.subject相對熵zh_TW
dc.subject蒙地卡羅zh_TW
dc.subject條件抽樣zh_TW
dc.subjectportfolio credit risken_US
dc.subjectimportance samplingen_US
dc.subjectcross-entropyen_US
dc.subjectMonte Carlo methoden_US
dc.subjectconditional samplingen_US
dc.title以相對熵的重要抽樣法計算投資組合信用風險zh_TW
dc.titleImportance Sampling via The Cross-Entropy for Portfolio Credit Risken_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis