Full metadata record
DC FieldValueLanguage
dc.contributor.author林彥正zh_TW
dc.contributor.author林文偉zh_TW
dc.contributor.authorLin, Yen-Chengen_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2018-01-24T07:37:00Z-
dc.date.available2018-01-24T07:37:00Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070252218en_US
dc.identifier.urihttp://hdl.handle.net/11536/138866-
dc.description.abstract本論文主要是研究三維資訊在人臉辨識系統上的應用,由二維照相機和三維高 解析度照相機所取得的二維影像及三維網格,對上述的資料進行臉部描述,其中 二維影像是透過紋理特徵分析的 LBP (Local binary patterns) 來取出每張照片的 特徵向量;三維網格的部份,是對於臉上的特徵點透過 Point signature 取得特徵 向量。進而利用機器學習中的 PCA (Principal component analysis)、LDA (Linear discriminant analysis) 以降低特徵向量維度並提升資料分類效能,最後使用機器 學習中的 SVM (Support vector machines) 來訓練分類器。數值結果顯示;透過 Point signature 所取得的三維特徵資訊對於人臉表情辨識系統是有幫助的。zh_TW
dc.description.abstractThis research is to study the 3D information on the application of face recognition system based on the 2D images and 3D meshes captured by the 2D camera and 3D high-resolution scanner. For the 2D images, we analyze the texture based on LBP(Local binary patterns) to get the feature vectors. For the 3D meshes, we define the feature vectors by using the Point signature of the selected feature points. Furthermore, we use machine learning techniques such as PCA (Principal component analysis), LDA (Linear discriminant analysis) in order to reduce the dimension of the feature vector and improve the performance of data classification. Finally, we train the classifier using machine learning based on SVM (Support vector machines). Several numerical results indicate the 3D information based on Point signature is helpful on face expression recognition system.en_US
dc.language.isoen_USen_US
dc.subject人臉辨識zh_TW
dc.subject人臉表情辨識zh_TW
dc.subject局部二值模式zh_TW
dc.subject點簽名zh_TW
dc.subject主成份分析zh_TW
dc.subject線性判別分析zh_TW
dc.subject支持向量機zh_TW
dc.subjectFace recognitionen_US
dc.subjectFace expression recognitionen_US
dc.subjectLocal binary patternsen_US
dc.subjectPoint signatureen_US
dc.subjectPrincipal component analysisen_US
dc.subjectLinear discriminant analysisen_US
dc.subjectSupport vector machinesen_US
dc.title三維資訊在人臉辨識上的應用zh_TW
dc.titleApplicatioins of 3D information in face recoginitionen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis