Full metadata record
DC FieldValueLanguage
dc.contributor.author洪士閔zh_TW
dc.contributor.author簡紋濱zh_TW
dc.contributor.authorHong, Shih-Mingen_US
dc.contributor.authorJian, Wen-Binen_US
dc.date.accessioned2018-01-24T07:37:41Z-
dc.date.available2018-01-24T07:37:41Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070352020en_US
dc.identifier.urihttp://hdl.handle.net/11536/139238-
dc.description.abstractDNA為一種長度可調的分子奈米線,由於其導電性不佳,因此加入二價金屬離子形成可導電之金屬離子DNA,譬如Zn-DNA、Co-DNA和Ni-DNA等。本實驗使用Ni2+離子螯合而成的Ni-DNA奈米線,利用此奈米線製作電子元件,來探討記憶電容特性與熱電效應。 由於Ni-DNA中鎳離子的氧化還原反應,在循環電壓掃描 (cyclic-voltage scan)中,正電壓可將Ni2+氧化成Ni3+,反之負電壓將Ni3+還原成Ni2+,因此可藉由不同極性的正、負偏壓來控制Ni-DNA中Ni2+與Ni3+離子數目。Ni-DNA元件可用一模擬電路來描述其氧化還原狀態,而模擬電路中的可變電容可藉由外加偏壓改變狀態並儲存電荷,所儲存的電荷可穩定持續一段時間。即使改變外加偏壓寫入的時間,電荷依舊穩定且長時間存在,可確認Ni-DNA具有記憶電容的特性。 我們共同合作研究Ni-DNA的團隊中,理論計算預測Ni-DNA有高的熱電轉換效率,即較高的席貝克係數 (Seebeck coefficient)。本實驗中以二倍頻技術與金屬電阻溫度測量方式來量測Ni-DNA的熱電效應,結果發現Ni-DNA所產生的熱電轉換效率值約為310 mV K-1,此數值略高於理論計算所預測的數值,推測是實驗中使用的元件所包含之Ni-DNA數目較理論預測多的緣故。此外,我們藉由不同極性電壓控制Ni-DNA中Ni2+與Ni3+的離子濃度,發現Ni-DNA的熱電轉換效率因2價3價Ni離子濃度改變而下降。zh_TW
dc.description.abstractDNA is one kind of molecular nanowires whereas its length is adjustable. Due to its poor conductivity, metallic DNA nanowires was made by chelating divalent metal ions, such as Zn2+, Co2+, Ni2+, etc. In this work, we’ll use the DNA chelated by nickel ions to explore memory capacitance and thermoelectric effect in the Ni-DNA nanowires. The measurement of current response in a cyclic-voltage scan exhibits the redox reaction between Ni2+ and Ni3+ within Ni-DNA base pairs. As a result, the redox of Ni ions can be controlled by applying different polarity of voltages. The Ni-DNA nanowires could be simulated by analog circuits. When a high bias voltage from 2 to 4 V is applied at Ni-DNA for a certain period of time, the Ni-DNA show variable capacitance and charge storage features. The stored charges are maintained for a long time and they can be read by a small bias voltage of 0.1 V. The Ni-DNA nanowire device demonstrates characteristics of a memory capacitor. Our theoretical cooperators calculate thermoelectric properties of Ni-DNA nanowires and predict a high thermoelectric conversion efficiency (Seebeck coefficient) Here we try experimentally to confirm their calculations. We design a pattern of electrodes for making Ni-DNA thermoelectric devices to measure thermoelectric power. The Seebeck coefficient is estimated to be about 310 mV K-1 which is much higher than theoretical predictions. It is argued that the high Seebeck coefficient is owing to a large bundle of Ni-DNA nanowires in our experiments whereas the theoretical calculations only predict the coefficient of small bundle of Ni-DNA nanowires. In addition, we apply a high voltage to change the ratio of concentration between Ni2+ and Ni3+ ions and we observe a decrease of the Seebeck coefficient.en_US
dc.language.isozh_TWen_US
dc.subject記憶電容zh_TW
dc.subject熱電效應zh_TW
dc.subjectmemcapacitanceen_US
dc.subjectNi-DNAen_US
dc.subjectthermoelectricen_US
dc.title探討Ni-DNA記憶電容與熱電效應zh_TW
dc.titleExploration of the memcapacitance and thermoelectric effect in Ni-DNAen_US
dc.typeThesisen_US
dc.contributor.department電子物理系所zh_TW
Appears in Collections:Thesis