标题: 类神经网路应用于电阻抗断层扫描
Applications of Artificial Neural Networks for Electrical Impedance Tomography
作者: 赛巴蒂安
蔡德明
Sébastien, Martin
Choi, Charles T. M.
电机资讯国际学程
关键字: 电阻抗断层扫描;人工类神经网路;后处理;Electrical Impedance Tomography;Artificial Neural Network;Post-processing
公开日期: 2016
摘要: 电阻抗断层扫描(EIT)是一个透过量测容器内的导体其电阻抗变化来成像的方法。电阻抗断层扫描目前可以应用在工业、军事、地质还有医疗等领域上。和其他医疗应用的技术比起来, 电阻抗断层扫描是一个快速且便宜的方法,并且不会产生出可能会造成病人受病变的游离辐射。然而,电阻抗断层扫描有较低成像品质的缺点。随着电阻抗断层扫描的出现,很多重建影像的方法也被提出来。因为使用线性理论会使影像过于平滑,进一步的限制精准度。因此,出现了现代非线性理论应用在模拟上来产生出高品质的影像,但还是因为种种原因在医疗上未能产生令人满意的结果。人工类神经网路(ANNs)被近年来视为有希望能够使电阻抗断层扫描成像更精确的非线性方法。这个方法不论在模拟或者是假体实验上都获得即佳的重建结果,但是要应用在医疗领域上人工类神经网路需要很完整的模型来做有效率的训练。本论文呈现了用建立在人工类神经网路上的不同方法来提升电阻抗断层扫描的成像品质并讨论。在较小非均质物质的情况下,使用人工类神经网络来估计非均质物质的位置可以显着提升成像速度。因此,EIT的反向问题使用人工类神经网络可以即时的解出来。而且,使用径向基函数核(RBF)在没有调整先前的转换方程式任何参数下可以提供更高品质的影像。本论文介绍一个可以自动选取最佳的分散常数的方法来提升成像的品质。另外,一个建立在人工类神经网路理论上的新方法会被提出。这个方法的是结合了线性逆求解和非线性人工类神经网的优点并且消除了各自的缺点。这个后处理的方法有在二维影像以及三维影像侧试过。使用真实的呼吸医学影像可以证实这个方法同时有好的影像品质以及稳定性。
Electrical impedance tomography (EIT) is an imaging method based on the variations of electrical impedance within a volume conductor. EIT can be applied in various fields such as industry, military, geology and, last but not least, medical sector. Compared to other technologies actually used in biomedical applications, EIT offers the advantages of being a rapid and inexpensive method, and does not emit any ionizing radiations that are potentially harmful for the patient. However, the shortcomings of this technology lay in the low quality of the produced images. Since the idea of using electrical impedance as an imaging method came out, several methods have been proposed to do the image reconstruction. While linear methods usually generate large smoothness in the image, which limits the accuracy, modern nonlinear methods appear to give high resolution in simulation but still have troubles to give satisfactory solution in biomedical applications, for several reasons. Artificial Neural Networks (ANNs) are currently regarded as a promising method for accurate nonlinear EIT reconstruction. This method gives excellent result in simulations or phantom reconstructions, but their use in biomedical applications requires an important modelling effort in order to train them efficiently. In this dissertation, different methods to improve the quality of EIT images based on ANNs are presented and discussed. For the case of small inhomogeneities, the reconstruction speed can be significantly increased by estimating the location of the inhomogeneities using an ANN. Then, the EIT inverse problem can be solved in real time by using an ANN. In this case, the use of Radial Basis Function (RBF) is known to give high quality images, although previous work did not adjust the different parameters of the transfer functions. This dissertation introduces a way to automatically pick the best spread constant in the RBF ANN, which then enhances the quality of the reconstructions. Additionally, a novel method based on ANN is introduced. This method aims to combine the advantages of both linear inverse solvers and nonlinear ANNs, and to eliminate their respective drawbacks. This post-processing method is tested on both two-dimensional and three-dimensional imaging. The use of real biomedical breathing data confirms that this original method bring both quality and stability.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070180804
http://hdl.handle.net/11536/139441
显示于类别:Thesis