完整後設資料紀錄
DC 欄位語言
dc.contributor.author柯晨光zh_TW
dc.contributor.author陳伯寧zh_TW
dc.contributor.authorDaniel, J. Greenhoeen_US
dc.contributor.authorChen, Po-Ningen_US
dc.date.accessioned2018-01-24T07:38:02Z-
dc.date.available2018-01-24T07:38:02Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT079013605en_US
dc.identifier.urihttp://hdl.handle.net/11536/139465-
dc.description.abstract一個實值的隨機變量𝖷 是一個從概率空間(𝛺, 𝔼, 𝖯) 到(ℝ, ≤, 𝖽, +, ⋅, ℬ) 的可量度函數映射,其中,ℬ 是在“實數線”(ℝ, ≤, 𝖽, +, ⋅) 上的通常博雷爾𝜎-代數,ℝ 是實數集合,≤ 是定義在ℝ 上的標準線性順序關係,𝖽(𝑥, 𝑦) ≜ |𝑥 − 𝑦| 是在ℝ 上的常規距離量度,而 (ℝ, +, ⋅, 0, 1) 則構成ℝ 的場域(field)。本文以例論述當概率空間到實數線的X 映射與實數線有不相類同的結構時,這個隨機變量的定義常導致不佳的統計計算量。本文因此提出兩種可能的替換統計系統,不像傳統的定義由一個隨機變量𝖷 映射至實數線,𝖷 可更普遍的映射到(1) 加權圖(2) 順序距離線性空間ℝ𝘕 。在以上任一映射 法中,𝖷 形成類似基礎隨機過程之有順序並有度量幾何結構映射。理想情況下,𝖷 的原映射結構與𝖷 的目標映射結構,相對於彼此,都是同構和等距的。zh_TW
dc.description.abstractA real-valued random variable 𝖷 is a measurable function that maps from a probability space (𝛺, 𝔼, 𝖯) to (ℝ, ≤, 𝖽, +, ⋅, ℬ) where ℬ is the usual Borel σ-algebra on the “real line” (ℝ, ≤, 𝖽, +, ⋅) and where ℝ is the set of real numbers, ≤ is the standard linear order relation on ℝ, 𝖽(𝑥, 𝑦) ≜ |𝑥 − 𝑦| is the usual metric on ℝ, and (ℝ, +, ⋅, 0, 1) is the standard field on ℝ. This text demonstrates that this definition of random variable is often a poor choice for computing statistics when the probability space that 𝖷 maps from has structure that is dissimilar to that of the real line. This text proposes two alternative statistical systems that, unlike the traditional method of a random variable 𝖷 mapping exclusively to the real line, 𝖷 instead maps more generally to (1) a weighted graph (2) an ordered distance linear space ℝ^𝘕 . In each mapping method, the structure that 𝖷 maps to is preferably one that has order and metric geometry structures similar to that of the underlying stochastic process. And ideally the structure 𝖷 maps from and the structure 𝖷 maps to are, with respect to each other, both isomorphic and isometric.en_US
dc.language.isoen_USen_US
dc.subject符元序列zh_TW
dc.subject機率zh_TW
dc.subjectsymbolic sequence processingen_US
dc.subjectprobabilityen_US
dc.subjectmetric linear spaceen_US
dc.subjectsignal processingen_US
dc.subjectgenomic signal processingen_US
dc.subjectgenomic sequence processingen_US
dc.subjectGSPen_US
dc.title符元序列處理之相關研究zh_TW
dc.titleA thesis concerning symbolic sequence processingen_US
dc.typeThesisen_US
dc.contributor.department電信工程研究所zh_TW
顯示於類別:畢業論文