标题: 基于机器学习的钢琴演奏技巧评量系统
Machine Learning for Automatic Evaluation of Basic Piano Performance
作者: 王予婷
张文辉
电信工程研究所
关键字: 机器学习;决策树回归;支持向量机;相关系数;钢琴触奏法;乐器数位介面;Machine Learning;decision tree;SVM;correlation;Articulation;MIDI
公开日期: 2016
摘要: 由于电子音乐科技的快速发展,透过网路分享MIDI演奏音乐资料的需求日益剧增。为了改善初学者的乐器演奏能力,国内外学者相继提出紧密结合电脑辅助与多媒体技术的互动式音乐教学平台,然而这些应用程式大都是透过虚拟钢琴提供基础的辅导功能,对于学生演奏技巧的提升相当有限。为了提升初学者的学习成效,本论文开发出一套钢琴演奏熟练度的自动化评量系统。本论文分为两个部份,第一部份利用MIDI特征纪录值进行三次云规曲线拟合取得演奏趋势的特征参数,并使用决策树演算法,针对钢琴音阶指法进行熟练度进行评分,并考量不同大调左右手的音阶指法差异性。实验结果显示决策树评分机制与不同专家间评分的相关系数为0.7625,呈现高度相关。第二部份则是利用支持向量机演算法,针对三种钢琴触奏法做分类判别。实验结果显示其和各专家的相关系数皆大约落在0.9,亦呈现高度相关。由此可知本系统在钢琴演奏技巧的熟练度评量具有良好的一致性与可靠性。
In recent years, the low-priced MIDI piano has become one of the most popular musical instruments. However, expert pianists are not usually available when the piano beginners are in need of corrective actions for proficiency improvement. To construct a support system for self-learning at the beginning stage, we proposed an automatic evaluation system of basic piano performance. This paper is divided into two parts. In the first part, we extracted five MIDI-based parameters and applied the cubic spline curve fitting technique to extract the feature parameters representing the tendencies of the proficiency for scale performance. Then we employed the decision tree algorithm to predict the proficiency scores of testing data. Experimental results show that the correlation coefficient between the evaluation scores given by automatic evaluation and three expert pianists is 0.7625. In the second part, we employed the SVM algorithm to classify three different articulations for piano performance. Experimental results show that the correlation coefficients between the automatic classification and three expert pianists are around 0.9. Results as above indicate the effectiveness of the proposed methods.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070460206
http://hdl.handle.net/11536/139745
显示于类别:Thesis