完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, SYen_US
dc.contributor.authorYeh, HDen_US
dc.date.accessioned2014-12-08T15:19:40Z-
dc.date.available2014-12-08T15:19:40Z-
dc.date.issued2005-03-01en_US
dc.identifier.issn0733-9429en_US
dc.identifier.urihttp://dx.doi.org/10.1061/(ASCE)0733-9429(2005)131:3(209)en_US
dc.identifier.urihttp://hdl.handle.net/11536/13979-
dc.description.abstractA mathematical model is presented for a constant-head test performed in a partially penetrating well with a finite-thickness skin. The model uses a no-flow boundary condition for the casing and a constant-head boundary condition for the screen to represent the partially penetrating well. The Laplace-domain solutions for the dimensionless flow rate at the wellbore and the hydraulic heads in the skin and formation zones are derived using the Laplace and finite Fourier cosine transforms. The solutions of hydraulic heads have been shown to satisfy the governing equations, related boundary conditions, and continuity requirements for the pressure head and flow rate at the interface of the skin zone and undisturbed formation. In addition, an efficient algorithm for evaluating those solutions is also presented. The dimensionless flow rates obtained from new solutions have been shown to be better than those of Novakowski's solutions, especially when the penetration ratio is large.en_US
dc.language.isoen_USen_US
dc.subjectground wateren_US
dc.subjectmathematical modelsen_US
dc.subjectthicknessen_US
dc.subjectwellsen_US
dc.titleLaplace-domain solutions for radial two-zone flow equations under the conditions of constant-head and partially penetrating wellen_US
dc.typeArticleen_US
dc.identifier.doi10.1061/(ASCE)0733-9429(2005)131:3(209)en_US
dc.identifier.journalJOURNAL OF HYDRAULIC ENGINEERING-ASCEen_US
dc.citation.volume131en_US
dc.citation.issue3en_US
dc.citation.spage209en_US
dc.citation.epage216en_US
dc.contributor.department環境工程研究所zh_TW
dc.contributor.departmentInstitute of Environmental Engineeringen_US
dc.identifier.wosnumberWOS:000227432600008-
dc.citation.woscount22-
顯示於類別:期刊論文


文件中的檔案:

  1. 000227432600008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。