标题: 高维影像特征于物件追踪之研究
Object Tracking Using High Dimensional Descriptor and Nearest Neighbor Algorithms
作者: 康景翔
田仲豪
戴亚翔
Kang, Ching-Hsiang
Tien, Chung-Hao
Tai, Ya-Hsiang
光电工程研究所
关键字: 影像特征;物件追踪;估计最近邻居;image feature;object tracking;approximate nearest neighbors
公开日期: 2016
摘要: 物件追踪的技术是电脑视觉领域中一个相当重要的课题,而透过撷取影像中的局部特征,并从中计算特征描述,以此特征描述实现的物件追踪,可以达到稳健且快速。但由于特征描述通常都是高维度的,因此需要设计不同的策略进行特征描述搜索,以加速整体的追踪效率。
在本研究中,分别介绍能够侦测影像中尺度不变、旋转不变的特征,并生成64个维度特征描述的SURF演算法,以及搭配均值聚类树的优先搜索演算法,最后结合此二个演算法,实现一套物件追踪系统,证实了相较于传统的线性搜寻法,使用优先搜索演算法能够使物件追踪的每秒帧率上升约30%。
Object tracking is a challenging topic in computer vision. Local descriptors generated from distinctive image features can perform a robust and rapid object tracking. However, the feature descriptors are usually vectors in a high-dimensional space, causing the conventional linear search method inefficient.
In this research, two algorithms are introduced. The first one is called “SURF”, which is designed to detect the scale-and-rotation-invariant feature in a image, and then generate descriptors for each feature point. The second one is the priority search method combined with the K-means tree. This algorithm can perform fast searching especially for high-dimensional data such as SURF descriptors. In the experiment part of this study, it is showed that the priority search method can raise the object tracking FPS for about 30%, in contrast to conventional linear search.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070350534
http://hdl.handle.net/11536/139924
显示于类别:Thesis