标题: 基于评论探勘及评分因素分析之使用者喜好预测
Review Mining for Rating Prediction based on Rating Factor Analysis
作者: 张馨予
刘敦仁
Chang, Shin-Yu
Liu, Duen-Ren
资讯管理研究所
关键字: 推荐系统;评分预测;隐含主题模式;面向语意;协同过滤;内容式过滤;语意分析;文字探勘;Recommender system;Rating prediction;Yelp;Latent Dirichlet Allocation;Aspect-based Semantics;Collaborative filtering;Content-based filtering;Semantic analysis;Text mining
公开日期: 2016
摘要: 线上评论网站是热门的评论资讯分享平台,提供使用者参考评论意见与评分来决定 消费行为,例如购买商品或是到访商家。然而大量的线上评论资讯造成资讯过载问题, 使用者不容易找寻符合其喜好的商品或商家,因此分析线上评论网站之评论与评分来预 测使用者之喜好评分,并进行个人化推荐为重要之研究议题。
传统使用者喜好评分预测方法大多以协同过滤方法分析历史评分纪录来预测个别 喜好评分,然而使用者之喜好评分通常受到不同面向的评分因素所影响,使用者对于各 面向有不同的喜好重视程度,而不同商家虽然有不同面向的表现,仍然可能获得不同面 向喜好使用者所给予之相似评分。因此,仅分析使用者给予商家的评分来进行预测,无 法有效分析使用者在各面向之相似喜好以及商家在各面向之相似表现,将导致喜好预测 上的误差。因此,传统仅以使用者评分进行喜好分析预测之方法,有其限制而无法有效 预测喜好评分。
本研究提出新的使用者喜好评分预测方法,考量基于不同面向的评分因素包括使用 者对于不同面向的喜好重视以及商家在不同面向的表现,本研究探勘评论文字来发掘各 面向的意见语意,并以此为基础分析使用者评分,发掘不同面向的评分因素,建立基于 面向喜好重视之使用者喜好评分预测模型,及商家的面向表现模型,进而预测使用者对 不同商家之喜好评分。本研究收集线上评论网站 Yelp 之资料进行实验评估,实验结果 显示,本研究所提的方法优于传统使用者喜好评分预测方法,能改善评分预测的准确性。
Online review websites are nowadays popular information sharing platforms, which help users decide whether to buy products or visit business stores by referring the review opinions and ratings. However, a large amount of review information results in information overload problems and difficulty for users to find preferred products or business stores. Accordingly, it is an important issue to predict user preferences and make recommendations by analyzing the review opinions and ratings on the websites.
Traditional rating prediction methods usually adopt collaborative filtering to predict user ratings based on historical rating records. However, users’ preference ratings are usually affected by the aspect-based ratings factors including user preference emphases and business performances on various aspects. Specifically, different users may have different emphases on aspect preferences. Business stores with different aspect performances may receive similar ratings from users with different aspect preferences. Consequently, predicting user preferences by only considering user ratings of business stores, cannot effectively identifying users with similar aspect preferences and business stores with similar business performances, and thus may result in poor predictions. Traditional methods, which only consider historical user ratings, are limited and not effective in predicting user ratings. This research proposes a novel rating
prediction method considering the aspect-based ratings factors. First, the review texts are analyzed to extract the opinion semantics of various aspects. Second, user ratings on aspect semantics are analyzed to discover the aspect-based rating factors, which are used to build the user rating prediction model and business performance model. Third, the two models are then used to predict user preference ratings on business stores. Finally, experiments are conducted to evaluate the proposed method using Yelp dataset. The experiment results show that the proposed method outperforms traditional methods and can improve the accuracy of rating predictions.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070353420
http://hdl.handle.net/11536/140182
显示于类别:Thesis