完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Chih-Chiangen_US
dc.contributor.authorLee, Jack C.en_US
dc.date.accessioned2014-12-08T15:19:46Z-
dc.date.available2014-12-08T15:19:46Z-
dc.date.issued2011-08-01en_US
dc.identifier.issn0277-6693en_US
dc.identifier.urihttp://dx.doi.org/10.1002/for.1183en_US
dc.identifier.urihttp://hdl.handle.net/11536/14031-
dc.description.abstractThis paper proposes a robust multivariate threshold vector autoregressive model with generalized autoregressive conditional heteroskedasticities and dynamic conditional correlations to describe conditional mean, volatility and correlation asymmetries in financial markets. In addition, the threshold variable for regime switching is formulated as a weighted average of endogenous variables to eliminate excessively subjective belief in the threshold variable decision and to serve as the proxy in deciding which market should be the price leader. The estimation is performed using Markov chain Monte Carlo methods. Furthermore, several meaningful criteria are introduced to assess the forecasting performance in the conditional covariance matrix. The proposed methodology is illustrated using daily S&P500 futures and spot prices. Copyright (C) 2010 John Wiley & Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectdynamic conditional correlationen_US
dc.subjectgeneralized autoregressive conditional heteroskedasticityen_US
dc.subjecthedge performanceen_US
dc.subjectMarkov chain Monte Carloen_US
dc.subjectvalue at risken_US
dc.titleForecasting Time-Varying Covariance with a Robust Bayesian Threshold Modelen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/for.1183en_US
dc.identifier.journalJOURNAL OF FORECASTINGen_US
dc.citation.volume30en_US
dc.citation.issue5en_US
dc.citation.spage451en_US
dc.citation.epage468en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000293478400001-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000293478400001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。