Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 林易萱 | zh_TW |
dc.contributor.author | 楊一帆 | zh_TW |
dc.contributor.author | Lin, Yi-Hsuan | en_US |
dc.contributor.author | Yang, Yi-fan | en_US |
dc.date.accessioned | 2018-01-24T07:39:13Z | - |
dc.date.available | 2018-01-24T07:39:13Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.uri | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070082201 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/140376 | - |
dc.description.abstract | 在這篇論文中,我們首先計算在西格爾模三維流型上有幾個不同的志村曲線的映射。接著我們用特定志村曲線的Hauptmodul來參數化表示這些虧格為0的像。 | zh_TW |
dc.description.abstract | Let O be a maximal order in an indefinite quaternion algebra of discriminant D over Q and Q_D be the set of points in Siegel’s modular threefold A_2 whose corresponding abelian surfaces have quaternionic multiplication by O. In this thesis, we first determine the number of irreducibe components in Q_D and then for each irreducible component of genus 0, we will find a parameterization in terms of the Hauptmodul of a certain Shimura curve associated to O. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 西格爾模三維流型 | zh_TW |
dc.subject | 志村曲線 | zh_TW |
dc.subject | QM | en_US |
dc.subject | abelian surface | en_US |
dc.subject | Shimura curve | en_US |
dc.subject | Siegel's modular threefold | en_US |
dc.title | 志村曲線在西格爾模三維流型上的映射 | zh_TW |
dc.title | Quaternionic loci in Siegel’s modular threefold | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |