Full metadata record
DC FieldValueLanguage
dc.contributor.author林易萱zh_TW
dc.contributor.author楊一帆zh_TW
dc.contributor.authorLin, Yi-Hsuanen_US
dc.contributor.authorYang, Yi-fanen_US
dc.date.accessioned2018-01-24T07:39:13Z-
dc.date.available2018-01-24T07:39:13Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070082201en_US
dc.identifier.urihttp://hdl.handle.net/11536/140376-
dc.description.abstract在這篇論文中,我們首先計算在西格爾模三維流型上有幾個不同的志村曲線的映射。接著我們用特定志村曲線的Hauptmodul來參數化表示這些虧格為0的像。zh_TW
dc.description.abstractLet O be a maximal order in an indefinite quaternion algebra of discriminant D over Q and Q_D be the set of points in Siegel’s modular threefold A_2 whose corresponding abelian surfaces have quaternionic multiplication by O. In this thesis, we first determine the number of irreducibe components in Q_D and then for each irreducible component of genus 0, we will find a parameterization in terms of the Hauptmodul of a certain Shimura curve associated to O.en_US
dc.language.isoen_USen_US
dc.subject西格爾模三維流型zh_TW
dc.subject志村曲線zh_TW
dc.subjectQMen_US
dc.subjectabelian surfaceen_US
dc.subjectShimura curveen_US
dc.subjectSiegel's modular threefolden_US
dc.title志村曲線在西格爾模三維流型上的映射zh_TW
dc.titleQuaternionic loci in Siegel’s modular threefolden_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis