标题: 智能家居环境中的手势控制
Gesture-based Control in a Smart Home Environment
作者: 亚幕达
林甫俊
Fariz Alemuda
Lin, Fuchun Joseph
电机资讯国际学程
关键字: 手势辨识;辨识模型;智慧家居;oneM2M;gesture recognition;recognition model;smart home;oneM2M
公开日期: 2017
摘要: 在智慧家居的环境中,居住者可以利用简单而且方便的方式来控制家里的电器用品。在众多的控制方法中,对于使用者来说,手势是控制智慧家居最自然且方便的方式,而利用感测器来侦测手势执行家电则是智慧居家的愿景。在这样的情境之下,智慧型手机扮演了一个重要的角色¬-一个将资料从智慧家居传到后端伺服器的闸道。为了辨认手势,需要透过测试资料来建立模组。而好的模组应该要能够符合大部分的人所作出的手势。有三种建立模组的方法:用户相依模组、用户不相依模组、以及混合式模组。用户相依模组来自每一位使用者本身的测试资料,而用户不相依模组则是从许多的测试资料而来,混和式模组则结合了用户相依模组和用户不相依模组来达到手势辨认。
在本研究中,我们分析上述三种模组中,哪一种会是辨认手势最好的模组。精准度、功耗,以及处理器/储存使用率等三种指标将会被用来作为评估的标准。为了达成我们的分析,我们计画使用Koala 感测器当作穿戴式装置,Android的智慧型手机当作闸道,并在OneM2M兼容式物联网平台分析手势。为了展示智慧家居的控制,我们定义一些特定的手势,并将其对照到智慧灯泡或者家用机器人上面。Koala感测器有来自加速器以及陀螺仪的六种初始资料,并且可以带在手腕上。飞利浦的Hue是一颗智慧灯泡,我们可以透过不同颜色或强度的变化来对应不同手势。OM2M是一个兼容式的开源物联网平台。我们会建立一个OM2M附加元件作为计算平台,使我们能够分析Koala感测器上的资料,并辨认穿戴者所做出的手势。
我们预计辨认十种不同的手势,、包括顺时钟、逆时钟、上、下、左、右、交叉顺时钟、交叉逆时钟、左到右V型、以及右到左V型。每一种手势都在智慧灯泡上做出相对应的变化。左到右V型是打开,右到左V型是关闭;交叉顺时钟会使灯泡闪烁,交叉逆时钟会使灯泡停止闪烁;往右会让灯泡更红,往左则会减少红色的比例;往上会让灯泡更绿,往下则是减少绿色的比例;顺时钟会让灯泡更蓝,逆时钟会减少蓝色的比例。
为了能够辨识这十种手势,初始资料会透过平均值、标准差、变异数以及变异数系数等方式,撷取出数据特征。这些特征扮演区分以及分类演算法重要的输入,而逻辑回归模型将会配合决策树当作分类演算法。我们使用WEKA来进行特征的分析。
本研究有四种特别的贡献: 十种手势的辨认、oneM2M兼容式平台达到机器之间的沟通、最佳的手势辨认方法、以及混和使用者相依模型以及使用者不相依模型的混混和式模型。透过这本研究,我们可以得知哪一种模型可以喂手势辨认提供最好的精确度,最低的CPU/储存使用率,以及最低的功耗。
In a smart home environment, a homeowner can exercise her control of home appliances in a convenient and natural way. Among various control methods, hand gesture is the most convenient and natural way for a user to operate their smart home. Hand gesture detection by wearable devices is a visionary scenario for appliance control in a smart home environment. In such a scenario, smart phone will play an important role as a gateway for sending the data to the backend server and controlling smart home. In order to recognize the gestures, models need to be constructed from training data. Good models should fit with most people’s gestures. There are three ways to derive the models: user dependent model, user independent model, and hybrid method. A user dependent model is derived from a single user’s training data while a user independent model is derived from many people’s training data. A hybrid model combines both a user dependent model and a user independent model for gesture recognition.
In this research, we analyze which of the above three ways is more reliable to derive the best model for hand gesture identification. Three metrics will be measured for the evaluation of models that include accuracy, power consumption, and CPU/storage usage. To achieve our analysis, we plan to use Koala sensor as the wearable device, Android smart phone as the gateway and oneM2M compliant IoT platform as the gesture analyzer. To exhibit smart home control, a particular hand gesture will be mapped to certain control on smart light or home robot. Koala sensor has 6 raw data from accelerometer and gyroscope sensors and can be used as a wristband accessory. Philips Hue will be used as the smart light; its different colors and light intensities are used to match different hand gestures. OM2M is a oneM2M complaint open source IoT platform. We will create an OM2M Plugin as our computing platform to analyze sensor data from Koala and identify the hand gesture of the wearer.
We plan to identify 10 different kinds of hand gestures including clockwise, counter clockwise, swipe up, swipe down, swipe left, swipe right, cross clockwise, cross counter clockwise, V-form from left-to-right, and V-form from right-to-left. Each gesture then will be mapped respectively into a corresponding smart light action as follows: V-form from left-to-right for turning on, V-form from right-to-left, cross clockwise for blinking on, cross counter clockwise for blinking off, swipe right for redden, swipe left for dimming red, swipe up for greening, swipe down for dimming green, counter clockwise for bluing, and clockwise for dimming blue.
To recognize these ten gestures, the raw data will first be extracted into statistical features such as mean, standard deviation, variance, and coefficient of variance. Features play an important role as a differentiator and input of classifier algorithm. In order to distinguish ten gestures, logistic regression will be used as the classifier algorithm along with the decision tree method. We will use WEKA to conduct the analysis of features.
There are four unique contributions from this research: ten hand gestures recognition, oneM2M compliant implementation for the Machine to Machine communication, determination of the best approach to recognize hand gesture, and adoption of hybrid method between user dependent and user independent gesture models. By this research, we can understand which of user dependent, user independent or hybrid method give better accuracy, lower CPU/memory usage, and lower storage utilization for recognizing hand gesture.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070360829
http://hdl.handle.net/11536/140508
显示于类别:Thesis