Full metadata record
DC FieldValueLanguage
dc.contributor.author鄧貴真zh_TW
dc.contributor.author李榮耀zh_TW
dc.contributor.authorDeng,Guey-Jenen_US
dc.contributor.authorLee, Jong-Eaoen_US
dc.date.accessioned2018-01-24T07:39:44Z-
dc.date.available2018-01-24T07:39:44Z-
dc.date.issued2017en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070352206en_US
dc.identifier.urihttp://hdl.handle.net/11536/140772-
dc.description.abstract在此論文中,我們利用橢圓函數dn(u,k)表示 Nonlinear Schrodinger equation(NLS)的某些特殊解q iq_t+q_xx+2|q|^2q=0 橢圓函數dn(u,k)定義在黎曼空間上,因此我們先介紹黎曼空間的理論,接著再介紹橢圓函數,最後利用黎曼空間和橢圓函數的理論去解 NLS 的特殊解並分析其退化。zh_TW
dc.description.abstractIn this paper, we express some special solutions q of the Nonlinear Schrodinger equation(NLS) iq_t+q_xx+2|q|^2q=0 by elliptic function dn(u,k). Since the function dn(u,k) is defined on the Riemann surface, we introduce the theory of Riemann surfaces at first, and then we introduce classical elliptic functions. Finally, we use the theory of Riemann surfaces and elliptic function to solve some special solution of NLS and analyze the degeneracies of the NLS solutions.en_US
dc.language.isoen_USen_US
dc.subject黎曼空間zh_TW
dc.subject橢圓函數zh_TW
dc.subject非線性薛丁格方程zh_TW
dc.subjectRiemann surfaceen_US
dc.subjectelliptic functionen_US
dc.subjectnonlinear Schrodinger equationen_US
dc.title非線性薛丁格方程的基本理論及特殊解zh_TW
dc.titleThe Underlying Theory and Special Solutions of Nonlinear Schrödinger equationen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis