標題: 研究氙燈輻射與熱板傳導作用機制對晶圓製程
Research on the Heating Mechanism of Xenon Lamp and Hot Plate for Semiconductor Manufacturing Reliability
作者: 羅信賢
柯富祥
Lo,Hsin-Hsien
Ko, Fu-Hsiang
工學院半導體材料與製程設備學程
關鍵字: 氙燈輻射;熱板傳導作用;閃光燈熱退火;氙燈輻射熱退火;閃光燈熱退火製程;Xenon Lamp annealing;Xe Lamp & Hot Plate;flash lamp annealing;FLA Process;FLA & RTA
公開日期: 2017
摘要: 本論文介紹了閃光燈熱退火(FLA)製程的改進,以實現針對高性能CMOSFETs的超淺接面(USJ)生產需求。關於超快速活化對於晶格損壞(殘留缺損,變形和裂紋)和圖案的依存問題,我們也進行了討論。研究指出FLA製程約1毫秒脈衝持續時間可以明顯改善超淺接面特性不同的微縮尺寸。 FLA製程是用於取代離子注入的製程後延伸到深層接面後的RTA的活化製程技術 。在傳統的快速熱回火RTA製程,熱擴散會擴散通過到源極和汲極,因此它無法被應用到65nm以後的元件。此外,在傳統的快速熱回火RTA,它是不可能充分地降低電阻值,但是在FLA,閃光後和離子注入後,立即就可以看出,離子的擴散幾乎不發生了。尖峰退火,這說明即使在更淺的離子注入,退火後的活性層擴大。在深層接面僅可應用於不擴展活性 我們提出一個系統的研究,計劃學習FLA製程的可靠性如下: 要研究熱退火機台的功能,在生產時維持正常的阻抗值(RS)和微粒(Particle),腔體內壓力值每日監測並能使機台處於穩定的狀況。 學習任何可能影響Flash熱退火的參數或環境。 為了促進晶圓良率,需解決Remain Particle問題,並研究造成“Remain Particle issue”的根本原因。 要學習分析功能(EX:阻力和壓力值,PLI的數據,SIMS資料,TEM數據顆粒計數...等),以優化FLA生產製程性能。 分析有關製程和硬體資料,以修補FLA製程上的缺陷。 在這項研究中,我們發現前退火技術是極限。溫度閃光照射在晶片的時間,大約是1毫秒,晶片的溫度是在1至3毫秒能迅速降低溫度。就算只有一次的發光也能夠充分地產生高能量。 在FLA設備和過程將穩定通過每日的檢查經由阻抗值及微粒的監測,使該製程的可靠性可藉由復歸的損壞和晶片斷裂問題的問題加以改進來解決。 透過每日的阻抗值及微粒的監測檢查以確保FLA設備和製程的穩定度,在解決電阻值的穩定性,殘留微顆粒和晶片破損問題後,更可以提高FLA製程之可靠性。
This paper presents the improvement of the flash lamp annealing (FLA) process to achieve the ultra-shallow junction (USJ) requirement for high performance CMOSFETs. Issues concerning ultra-rapid activation are discussed, namely, crystal damage (residual defect, deformation and crack) and pattern dependence. We report that the FLA process with about 1ms pulse duration can improve USJ characteristics for various design-scale cells. FLA is a technique for replacing the RTA used for activation after ion implantation extension and deep junction. In the conventional RTA, thermal diffusion will spread the source and the drain by, it cannot be applied to later 65nm device. Also, in the conventional RTA, it is not possible sufficiently reduce the resistance value. In FLA, after flash and immediately after ion implantation, it can be seen that the diffusion of ions is not almost happened. The spike anneal, indicating that even after more shallow ion implantation, the active layer widens after annealing. In Deep Junction is not Extension only can be applied. We present a systematic study on the plan for learning FLA Process reliability as following: To research the function for RS & Particle, stress monitor stable. To learning the relation process with Flash Annealing. To promote the wafer yield after Remain Particle issue be solved and also research the root cause of “Remain Particle issue”. To learning the analysis function (EX: Resistance & Stress value, PLi data, SIMS Profile, TEM data Particle count…etc.) to optimize FLA Process performance. Analysis the parameter that about Process & Hardware to improve defect recovery in FLA Processing. In this study, we found prior annealing technique is the limit. Temperature flash shines time of the wafer, is about 1ms, the temperature of the wafer is of rapidly decreasing the temperature at 1 ~ 3ms.Emission is only once, it is possible to sufficiently process the energy is high. The FLA Equipment and process will stable through the daily check by RS & Particle monitor, and the process reliability could be improved after we solved the issue of Sheet Resistance stability ,remain particle and wafer breakage issue .
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT079975510
http://hdl.handle.net/11536/141013
Appears in Collections:Thesis