标题: 以深度学习与周期性样式探勘为基础之使用者地点长期预测
Long-Term User Location Prediction Using Deep Learning and Periodic Pattern Mining
作者: 黄文浩
曾新穆
Wong, Mun-Hou
Tseng, Vincent Shin-Mu
资讯科学与工程研究所
关键字: 长期预测;位置预测;轨迹探勘;移动模式;Long-Term Prediction;Location Prediction;Trajectory Mining;Mobility Pattern
公开日期: 2017
摘要: 近年来,随着行动通讯技术的进步和第四代行动网络的发展和日益普及与位置定位技术的发展,行动通设备已经产生了有关人类、车辆、动物等大量的移动轨迹数据,反映出相关物体的移动性,许多新创团队亦透过预测用户的下一个位置提供了新颖的服务。目前现有的研究只能预测用户的下一个位置,也就是是短期位置预测,但是却无法运用于长期位置预测之情境。因此,本论文主旨为发展出一套长期位置预测的架构与方法。我们认为,如果我们能够提高长期位置预测的可靠性,目前依赖短期位置预测的服务可以受益,甚至可诞生出更多创新且独特的服务。在本文中,我们提出了一个基于深度学习和周期性样式探勘的架构与方法进行长期位置预测。我们的预测架构与方法套用了自然语言模型的想法,并采用多步递归策略以进行长期预测。为了减少多步递归策略所的累积的误差损失,我们利用周期性样式探勘技术,减少所需的递归次数,进而减少损失,提高预测架构与方法的可靠性。基于真实世界的移动轨迹数据,我们进行了一系列的实验。实验结果显示,本研究所提出的预测架构与方法可以做出有效的长期位置预测。
In recent years, with the advances in mobile communication and growing popularity of the fourth-generation mobile network along with the enhancement in location positioning techniques, mobile devices have generated extensive spatial trajectory data, which represent the mobility of moving objects. New services are emerged to serve mobile users based on their predicted locations. This thesis is concerned with the long-term location prediction of a user. Most of the existing studies on location prediction can only predict one next location of a user, which is regarded as short-term next location prediction, and they are not applicable for long-term location predictions. We believe that if we can improve the accuracy of long-term next location prediction predict, every current service that takes benefits of predictability on next location can be further extended. In this thesis, we propose a prediction framework named LSTM-PPM that utilises deep learning and periodic pattern mining for effective long-term location prediction. Our framework devises the ideology from natural language model and uses multi-step recursive strategy to perform long-term prediction. To reduce the accumulated loss in multi-step strategy, we utilise further the periodic pattern mining technique. Through empirical evaluation on a real-life trajectory data, our framework is shown to provide effective performance in long-term location prediction.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070456148
http://hdl.handle.net/11536/141798
显示于类别:Thesis