Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 陳建宏 | zh_TW |
dc.contributor.author | 楊裕雄 | zh_TW |
dc.contributor.author | Chen, Chien-Hung | en_US |
dc.contributor.author | Yang, Yuh-Shyong | en_US |
dc.date.accessioned | 2018-01-24T07:42:08Z | - |
dc.date.available | 2018-01-24T07:42:08Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.uri | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT079928812 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/142403 | - |
dc.description.abstract | 生醫資電的發展將可能成為暨半導體產業後下一個台灣最大產業發展之一,然而在生醫資電下的發展絕對是需要電子、生物、資訊等跨領域式整合。過去十年,感測器的發展順著半導體科技的進度向前跨了一大步,特別是需要運用在疾病的早期檢測、快速分析並可以有效地減低疾病發生的生物感測器尤其重要。其中一個相當重要因素為能夠相容於現今半導體製程製作,且不須昂貴的製程設備,達到大量生產的目的。多晶矽奈米線場效電晶體在許多研究上已被證實,可完全符合上述的條件。基於多晶矽奈米線場效電晶體的超高靈敏度的特色,在元件電性上的控制與量測顯得相當重要,本研究重點在探討如何有效降低元件本身結構特性的問題並取得微小訊號,其中提出「斜率式閘極電壓」運用在電訊號的量測上,並有效地降低訊號變異量到達10 pico (10-12) 等級;另外,提出使用「光」作為非接觸式元件電性調控方式。我們使用市面上最容易取得的LED作為光源來證實矽奈米線場效電晶體可藉由「光」穩定的控制元件電性的改變。在未來,多晶矽奈米線場效電晶體具有超高靈敏度、免標記、即時檢測等特性,如結合本篇的研究,將能開創出新的應用領域。有潛力地被發展成為可用於專業研究,與定點監測之可攜式生物感測器應用。 | zh_TW |
dc.description.abstract | Bio-Information and Communication Technology (BioICT) will become one of largest industry of next generation after the semiconductor field. The BioICT industry will be the interdisciplinary knowledge integration. In last decade, sensor technique represents a “big step forward” due to the progress of semiconductor technology, especially using in bio-sensor, which is important for early detection, rapid intervention, and a possible reduction of the disease occurrence. Another important feature for bio-sensor is the fabrication processing which approach was comparable with current commercial semiconductor process and forsaken expensive electron beam (E-beam) lithography tools for large-scale production. A simple and low-cost method to fabricate poly-crystalline silicon nanowire field-effect transistor (poly-SiNW FET) for bio-sensing application was demonstrated and verified that can fully comply with the above feature. Due to the ultrasensitive feature, the control and measurement of electric characteristic of poly-SiNW FET become very important. How to reduce the impact of component structure for small signal obtaining and provide new method “Light control” for electronic property modification are the main topics for this thesis. The “Sloped VGS” control method had proposed and it can reduce the variance of the electronic signal measurement to around 10 pico (10-12). The “Light control” method is also verified via the LED light source. The electronic property of poly-SiNW FET can be modified in variance light intensity. With poly-SiNW FET characteristics (ultrasensitive, label-free, and real-time detection) and advantages (potential for mass commercial production and integration with microfluidic system and circuit), it can integrate with the research of this thesis and create more applications and finally develop a portable biosensor for field use and point-of-care diagnoses. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 矽奈米線 | zh_TW |
dc.subject | 場效電晶體 | zh_TW |
dc.subject | 生醫感測器 | zh_TW |
dc.subject | Silicon Nanowire | en_US |
dc.subject | Field-Effect Transistor | en_US |
dc.subject | Biosensor | en_US |
dc.title | 矽奈米線場效電晶體生醫感測器之電性探討 | zh_TW |
dc.title | The Investigation on Electrical Characteristics of Silicon Nanowire Field-Effect Transistor Based on Biosensor | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 生物科技學系 | zh_TW |
Appears in Collections: | Thesis |