标题: | 论共轭分子的阶级结构对有机场效电晶体性能影响 The Role of Hierarchical Structures of Conjugated Molecules in the Performances of Organic Field-Effect Transistors |
作者: | 吴冠毅 王建隆 Wu, Kuan-Yi Wang, Chien-Lung 应用化学系硕博士班 |
关键字: | 共轭分子;结晶多型态;晶体缺陷;取向性晶体;有机场效电晶体;conjugated molecules;polymorphism;crystal defect;crystal orientation;OFET |
公开日期: | 2017 |
摘要: | 在本论文中,我们首先透过分子设计讨论共轭分子的结构-性能关系,接着探讨结晶多型态与晶体缺陷对共轭分子的电荷迁移率影响,到透过湿式制程单晶生技术,控制晶体形貌以符合 有机场效电晶体 (organic field transistor;OFET) 元件的应用,以纵向角度探讨影响材料电荷迁移率的因子。 首先,在分子尺度中,阶梯型共轭高分子的分子结构具有较佳的电荷传递特性,但实际研究中,这类分子的电荷迁移率却偏低,所以在第一部份研究,我们将七元环并苯的 DTCC 单元与 1T 、 3T、 BDT、 TT 连接单元相接,形成 PDTCC 交替高分子,透过光电与 X 光绕射分析,PDTCC-3T 的固态结构具有最规则的分子排列与较强的分子间电子耦合,由于 DTCC 与 3T 为轴对称分子,因此共聚物的高分子主链属于直线型,而当 DTCC 和具有中心对称的单元 (BDT 与 TT) 相接时,弯取型的共轭高分子较难以形成规则的固态结构,虽然 PDTCC-1T 一样为直线型分子,但 1T 长度过短,因此无法降低烷基侧链的立体障碍,造成 π-π 堆叠结构被破坏,在此分子系列中,PDTCC-3T 具有最高的电洞迁移率:µh = 0.0136 cm2/Vs。第二部份研究,我们尝试透过物理硬化的方式,提升共轭高分子主链的共平面性与刚硬性,我们将双键单元引入 PVTh4FBT 共轭高分子,并且探讨烷基侧链在主链上的取代位置与密度对其固态结构的影响,从光电与绕射分析可知P1高分子具有最佳的共平面性与刚硬性,因此能引导出较规则的晶体排列与分子取向性,并且 P1 的 µh = 0.26 cm2/Vs。 第三部份研究:溶剂在湿式制程中扮演很重要的角色,为了探讨溶剂效应对C60 结晶行为与电子迁移率 (µe) 的影响,首先利用 PDMS 辅助长晶法 (PAC) 生长出 C60 晶体阵列,在形貌与结构分析中发现从不同的溶剂类型生长出 C60晶体阵列有不一样的结晶习惯与溶剂化晶体结构,进一步以热退火处理移除溶剂分子,因此 CS2 条件下的 C60 ¬晶体阵列有最高的 µe = 1.70 cm2/Vs。第四部份研究,我们利用PAC法生长 TIPS-PEN 晶体阵列,从低沸点溶液长出的TIPS-PEN 晶体透过 GIXD与电子绕射分析,发现晶体的长轴有晶格失配与低角度晶界生成,由于在低沸点的溶液环境下,TIPS-PEN 晶体生长制程时间较短,所以分子沿着晶体长轴方向排列时,容易产生出晶格失配并且造成µh 下降,而当提高沸点时,增加 TIPS-PEN 的生长制程时间,因此 TIPS-PEN 晶体长轴方向上的晶格失配与晶体缺陷能有效降低,所以 TIPS-PEN在甲苯条件下具有高的 µh = 2.0 cm2/Vs。第五部分研究: C60 分子在分子尺度下具有良好的光电特性,因此在分子自组装领域中,C60 单元为突出的结构单元 (building block)。因此在此研究,我们探究新颖的热致型 C60 液晶分子 Cn-azo-C8-C60 分子 (n = 4, 7, 8, 9, 12),此系列分子,由 C60 单元和不同末端烷基取代的偶氮苯,并且透过八个碳的亚甲基链将 C60 单元与偶氮苯相接形成C60 液晶分子,在熔融态以下,此系列的 C60 液晶分子形成侧链层与C60层交替的层状液晶结构,并且我们成功透过偶氮苯侧链层的熔融与结晶机制控制液晶结构中 C60 堆叠的层数,当末端烷基链数 n < 9 时,由于侧链无法结晶,使得 C60 液晶分子自组装成四层C60 堆叠的层状结构,当 n = 9, 12,侧链层在常温下形成有序结构,因此 C9 和 C12 分子自组装成两层 C60 堆叠的层状结构进一步当侧链单元熔融时,C9 和 C12 分子则会进一步组装成四层与三层的层状液晶结构,在未来将进一步探讨此系列材料在有机场校电晶体的电荷传递性能。 In this study, we give the systematic study on the charge transport properties of conjugated molecules from its structure-properties relationship to the influences of polymorphism and crystal defects on the charge transports of crystal arrays. First, the roles of the comonomeric units in reaching high hole mobility (µh) of copolymers containing a heptacyclic arene unit (DTCC) were investigated in this study. A series of four DTCC-based alternating copolymers, PDTCC-1T, PDTCC-3T, PDTCC-BDT, and PDTCC-TT, were synthesized from the copolymerizations between DTCC and comonomeric units including thiophene (1T), terthiophene (3T), benzodithiophene (BDT) and thienothiophene (TT) units. Optoelectronic and 2D-WAXD studies revealed that strong electronic interaction and ordered solid-state structure were only observed in PDTCC-3T. It is attributed to the combination of two axisymmertric units, DTCC and 3T, linearized the polymer backbone, leading to a compact solid-state packing and high µh = 0.0136 cm2/Vs. Furthermore, the short axisymmeritric 1T although results in a linear backbone of PDTCC-1T, comparing to 3T, it is too short to effectively reduce interchain steric hindrance caused by the side chains on DTCC. Thus, effective π−π stacking is hindered in PDTCC-1T, resulting in low µh. Second, we used the physical rigidification to enhance the backbone coplanarity and rigidity of conjugated polymers. With the introduction of vinylene to the PVTh4FBT backbone, a series of three PVTh4FBT polymers containing different alkyl side chain placement was synthesized. The thermochromic behaviors and DFT calculations indicated that the backbone coplanarity and rigidity of the PVTh4FBT polymers can be effectively modulated by adjusting the side chain position and density. Higher ordered and better oriented edge-on lamellar packing was formed by P1, which possesses the most rigid and planar backbone among the three polymers. Thus, P1 delivered the highest µh = 0.26 cm2/Vs among the three analogues Third, the solvent effects on the C60 crystallization behavior and electron mobility (µe) were discussed. Using the PDMS–assisted crystallization method, the C60 crystal arrays were grown from CS2, m-xylene and ODCB solutions. In the morphological analysis and structural characterization, C60 crystal arrays from different solvent conditions have distinct crystal habits and solvated lattice structures. After the thermal treatment, the solvents were removed from C60 solvated lattice structures. Thus, after the thermal treatment, C60 crystal arrays (CS2) with better morphology and non-solvated lattice structure gives highest µe = 1.70 cm2/Vs. Fourth, in order to study the relationship of crystal-growth rate and crystal defects, the TIPS-PEN crystal arrays were prepared from low and high Tb solvents using PAC method. In the diffraction analysis, lattice mis-orientation and low angle boundaries were found in the long axis of crystal arrays from low Tb solvents, dichloromethane and CS2 whih lead to the higher crystal-growth rates. Using high Tb solvents, toluene and chlorobenzene, the lattice mis-orientation in the long axis of crystal arrays can be reduced effectively along with lower crystal-growth rate. Therefore, among the solvent conditons, TIPS-PEN crystal arrays from toluene solution have the highest µh = 2.0 cm2/Vs. In the final study, we successfully characterize the self-assembly structures of a family of new thermotropic C60 liquid crystals: Cn-azo-C8-C60 (n=4, 7, 8, 9, 12). Since C60 molecule performs excellent electrical and optical properties in the molecular scale, it is an ideal candidate as the building block in the field of molecular self-assembly. Cn-azo-C8-C60 are composed of three segments: 1. C60 unit; 2. azobenzene segment with long alkoxyl chains (n=4, 7, 8, 9, 12) and 3. octa-methylene chain as a flexible spacer connecting the other segments. Cn-azo-C8-C60 molecules are self-orangized into the semetic lamella structures with C60 layer sandwiched by side-chain layers. Furthermore, the number of C60 layer in the lamella superlattice is successfully controlled by phase behavior of azobenzene segment chains. For n= 4-8, due to shorter length azobenzene segment chains, the fullerene molecules are assembled to quadruple-layer two-dimensional (2D) fullerene crystals sandwiched between alkyl-chain layers, driven by π- π interaction. In contrast, for n = 9, 12, The competition between crystallization of azobenzene segment chains and π- π interaction leads C9 and C12 molecules to form double-layer 2D fullerene semetic liquid crystals. Once azobenzene segment chains become isotropic under heat, π- π interaction takes over the formation of the structures, and causes C9 and C12 to pack into quadruple-layer and triple-layer structures respectively. In the future, the charge transport property of Cn-azo-C8-C60 will be further examined to discuss how the layer numbers of C60 influence the charge transport property。 |
URI: | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070152570 http://hdl.handle.net/11536/142440 |
显示于类别: | Thesis |