完整后设资料纪录
DC 栏位 | 值 | 语言 |
---|---|---|
dc.contributor.author | 危尔捷 | zh_TW |
dc.contributor.author | 崔秉钺 | zh_TW |
dc.contributor.author | 吴品钧 | zh_TW |
dc.contributor.author | Wei, Erh-Jye | en_US |
dc.contributor.author | Tsui, Bing-Yue | en_US |
dc.contributor.author | Wu, Pin-Jiun | en_US |
dc.date.accessioned | 2018-01-24T07:42:25Z | - |
dc.date.available | 2018-01-24T07:42:25Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.uri | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070351809 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/142615 | - |
dc.description.abstract | 由于锗相对于矽拥有较高的载子迁移率,所以它被视为具有希望取代矽的通道材料之一。然而锗的次氧化物具有热不稳定的特性,GeO的挥发将会造成界面劣化并影响其电特性,因此在这篇论文中我们将研究不同的热制程对于金属-绝缘层-锗电容器之影响。 首先, 我们将讨论施加不同的闸极前热处理对于锗电容器的影响。我们发现在氧化锗中,透过增加高价位氧化态的量和减少低价位氧化态的量将能获得较好的界面品质,而致密化处理和表面退火这两种闸极前热处理将增加锗的不同氧化态。在定义主动区前的致密化处理过程中,在界面将会同时产生氧化锗和锗的化合物。另一方面,相对于在氮气环境中进行表面退火,在真空环境下进行表面退火将可以更有效地分解氧化锗并钝化表面。因此经致密化处理后,在氮气环境下进行表面退火将不能完全地分解锗的化合物,但在真空环境下却可以有效的分解并钝化表面。在完整的分解之后,氧气电浆将能够在接下来的制程中形成更多的高价位氧化态。经比较漏电流密度和电荷缺陷密度,藉由在氮气下致密化处理搭配真空下表面退火将被认为优于其它的闸极前热处理方法。 其次将探讨闸极的氧化成长和高介电层沉积的温度效应,根据XPS分析和电性,GeO的挥发可能有两种机制:发生在沉积过程与发生在沉积后退火或烧结过程。因此我们认为高温的氧化将帮助氧化锗的成长而低温的沉积将减少GeO在沉积过程中挥发。这种方法可以在界面上留下较多的氧化锗并达成较低的漏电流密度和电荷缺陷密度。 第三部分将讨论沉积后退火对二氧化铪和二氧化锆样品的影响,增加沉积后退火温度将会使得GeO挥发增加并扩散更多到高介电层,这将会造成二氧化锆产生部分结晶并且增加它的介电常数。此外,在相同的沉积后退火温度下,我们还发现二氧化锆的样品比二氧化铪的样品具有更厚的界面层,这可能是因为二氧化锆会让锗会被氧化更多所造成。 最后,我们结合了这些较好的热处理方式来制作优化的元件。藉由增加高价位的氧化态,我们取的了一个具有等效氧化厚度0.8奈米、低漏电电流(1.5×10-2 A/cm2)、很小的迟滞现象(~155 mV)以及在能量位于价带电位0.2电子伏特位置的电荷缺陷密度9.27×1011(eV-1cm−2)的电容。我们预期这些成果将可以应用在改善锗基板金氧半场效电晶体的特性上。 | zh_TW |
dc.description.abstract | Germanium is considered as one of the promising channel materials owing to its higher bulk carrier mobility than silicon. However, germanium sub-oxide is thermodynamically unstable. GeO volatilization will degrade the interface and impact the electric characteristics. Therefore, the effect of various thermal processes on germanium metal-insulator-semiconductor capacitor quality are studied in this thesis. First, applying various pre-gate thermal treatments on germanium capacitor are discussed. We can find that increasing germanium oxide with more amount of high oxidation states and less amount of low oxidation states can get better interface quality. Both densification and surface annealing will increase oxidation states of germanium differently. Densification before active area patterning will generate germanium oxides and germanium compounds at the interface simultaneously. On the other hands, surface annealing in vacuum can desorb germanium oxides more and passivate surface better than surface annealing in N2 ambient. Thus, using surface annealing in N2 ambient after densification cannot desorb the germanium compounds completely but surface annealing in vacuum after densification can desorb and passivate germanium surface effectively. After complete desorption, O2 plasma can form more amount of high oxidation state in following process. Compared with leakage current density and interface state density, it is suspected that combining densification in N2 ambient and surface annealing in vacuum is better than other pre-gate treatments. Second, the effects of gate stack formation and deposition temperatures are investigated. According to XPS analysis and electrical characteristics, there might have two possible mechanisms in GeO volatilization: GeO volatilization during deposition, and GeO volatilization during PDA and sintering. Therefore, it is suspected that higher temperature of plasma oxidation can help germanium oxide formation and lower temperature of deposition can decrease GeO volatilization during the deposition process. This method can remain more amount of germanium oxide at the interface and achieve lower interface state density and leakage current density. Third, the effect of PDA temperature on HfO2 and ZrO2 samples are discussed. Increasing the PDA temperature will make GeO volatilized and diffused into high-k film more. It will make ZrO2 partially crystalized and increase the k-value. Besides, we find ZrO2 sample has thicker interfacial layer than HfO2 sample at same PDA temperature. It is suspected that germanium might be oxidized more at the same PDA temperature on the ZrO2 sample. Finally, the better process conditions of previous thermal treatments are combined to fabricate the optimized device. By increase the amount of high oxidation states, the capacitor with EOT about 0.8 nm, low leakage current density of 1.5×10-2 A/cm2 at |Vg –VFB|=1 V, small hysteresis (~155 mV), low interface state density of 9.27×1011 eV-1cm−2 at E− EV = 0.2 eV has achieved in this thesis. We expected these achievements can be applied to improve the performance of Ge MOSFETs. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 锗 | zh_TW |
dc.subject | 热制程 | zh_TW |
dc.subject | 二氧化铪 | zh_TW |
dc.subject | 二氧化锆 | zh_TW |
dc.subject | germanium | en_US |
dc.subject | thermal processes | en_US |
dc.subject | XPS | en_US |
dc.subject | GeO volatilization | en_US |
dc.subject | HfO2 | en_US |
dc.subject | ZrO2 | en_US |
dc.title | 热制程对锗金属绝缘层半导体元件上闸极介电质品质影响之研究 | zh_TW |
dc.title | A Study on the Effect of Thermal Processes on Gate Dielectric Quality in Ge MIS device | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 电子研究所 | zh_TW |
显示于类别: | Thesis |