Full metadata record
DC FieldValueLanguage
dc.contributor.authorLEE, JCen_US
dc.contributor.authorTSAO, SLen_US
dc.date.accessioned2014-12-08T15:20:07Z-
dc.date.available2014-12-08T15:20:07Z-
dc.date.issued1993-08-01en_US
dc.identifier.issn0277-6693en_US
dc.identifier.urihttp://dx.doi.org/10.1002/for.3980120604en_US
dc.identifier.urihttp://hdl.handle.net/11536/14262-
dc.description.abstractThe power transformation of Box and Cox (1964) has been shown to be quite useful in short-term forecasting for the linear regression model with AR(1) dependence structure (see, for example, Lee and Lu, 1987, 1989). It is crucial to have good estimates of the power transformation and serial. correlation parameters, because they form the basis for estimating other parameters and predicting future observations. The prediction of future observations is the main focus of this paper. We propose to estimate these two parameters by minimizing the mean squared prediction errors. These estimates and the corresponding predictions compare favourably, via revs and simulated data, with those obtained by the maximum likelihood method. Similar results are also demonstrated in the repeated measurements setting.en_US
dc.language.isoen_USen_US
dc.subjectAR(1) DEPENDENCEen_US
dc.subjectBOX-COX TRANSFORMATIONen_US
dc.subjectMAXIMUM LIKELIHOODen_US
dc.subjectMINIMUM PREDICTION ERRORSen_US
dc.subjectSIMULATIONSen_US
dc.subjectTECHNOLOGY PENETRATIONen_US
dc.titleON ESTIMATION AND PREDICTION PROCEDURES FOR AR(1) MODELS WITH POWER TRANSFORMATIONen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/for.3980120604en_US
dc.identifier.journalJOURNAL OF FORECASTINGen_US
dc.citation.volume12en_US
dc.citation.issue6en_US
dc.citation.spage499en_US
dc.citation.epage511en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:A1993LU05800003-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. A1993LU05800003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.