Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 藍立呈 | zh_TW |
dc.contributor.author | 吳毅成 | zh_TW |
dc.contributor.author | 陳榮傑 | zh_TW |
dc.contributor.author | Lan, Li-Cheng | en_US |
dc.contributor.author | Wu, I-Chen | en_US |
dc.contributor.author | Chen, Rong-Jaye | en_US |
dc.date.accessioned | 2018-01-24T07:42:45Z | - |
dc.date.available | 2018-01-24T07:42:45Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.uri | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070456513 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/142888 | - |
dc.description.abstract | DeepMind 為AlphaGo提出的一個搜尋演算法稱作APV-MCTS,它能非同步地結合Monte Carlo Tree Search (MCTS) 和Deep Convolutional Neural Networks (DCNN)。AlphaGo透過此演算法結合他們訓練的DCNN成為第一支成功擊敗圍棋人類職業棋士的圍棋AI程式。本篇主要是透過探討APV-MCTS的特性,並將其改成一個更一般化的演算法稱作GAPV-MCTS,以適用於更多不同的遊戲。我們以NoGo (一個圍棋的變種遊戲) 做為我們主要的實驗對象。在經過調整GAPV-MCTS裡的參數後,GAPV-MCTS在用同一組DCNN的情況下,相較於APV-MCTS可以多進步約220 ELO (勝率77%)。 | zh_TW |
dc.description.abstract | Asynchronous Policy and Value MCTS Algorithm (APV-MCTS) proposed by DeepMind is a searching algorithm used in AlphaGo that combines Monte Carlo Tree Search (MCTS) with Deep Convolutional Neural Networks (DCNN) asynchronously. With APV-MCTS and DCNN, AlphaGo successfully became the first Go AI program that defeated professional human Go players. In this thesis, we will discuss some issues of APV-MCTS, and propose General APV-MCTS (GAPV-MCTS), which is modified from APV-MCTS to improve AI programs of other games. We apply GAPV-MCTS to NoGo (a variation of Go). After tuning some parameters in GAPV-MCTS, it performs 220 ELO (77% winning rate) higher than APV-MCTS using the same DCNNs. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 蒙地卡羅樹搜尋 | zh_TW |
dc.subject | 類神經網路 | zh_TW |
dc.subject | 深度卷積類神經網路 | zh_TW |
dc.subject | MCTS | en_US |
dc.subject | DCNN | en_US |
dc.subject | AlphaGo | en_US |
dc.subject | APV-MCTS | en_US |
dc.subject | GAPV-MCTS | en_US |
dc.title | 蒙地卡羅樹搜尋與深度卷積類神經網路之一般化結合 | zh_TW |
dc.title | A General Approach to Combining MCTS with DCNN | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 網路工程研究所 | zh_TW |
Appears in Collections: | Thesis |