Full metadata record
DC FieldValueLanguage
dc.contributor.author藍立呈zh_TW
dc.contributor.author吳毅成zh_TW
dc.contributor.author陳榮傑zh_TW
dc.contributor.authorLan, Li-Chengen_US
dc.contributor.authorWu, I-Chenen_US
dc.contributor.authorChen, Rong-Jayeen_US
dc.date.accessioned2018-01-24T07:42:45Z-
dc.date.available2018-01-24T07:42:45Z-
dc.date.issued2017en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070456513en_US
dc.identifier.urihttp://hdl.handle.net/11536/142888-
dc.description.abstractDeepMind 為AlphaGo提出的一個搜尋演算法稱作APV-MCTS,它能非同步地結合Monte Carlo Tree Search (MCTS) 和Deep Convolutional Neural Networks (DCNN)。AlphaGo透過此演算法結合他們訓練的DCNN成為第一支成功擊敗圍棋人類職業棋士的圍棋AI程式。本篇主要是透過探討APV-MCTS的特性,並將其改成一個更一般化的演算法稱作GAPV-MCTS,以適用於更多不同的遊戲。我們以NoGo (一個圍棋的變種遊戲) 做為我們主要的實驗對象。在經過調整GAPV-MCTS裡的參數後,GAPV-MCTS在用同一組DCNN的情況下,相較於APV-MCTS可以多進步約220 ELO (勝率77%)。zh_TW
dc.description.abstractAsynchronous Policy and Value MCTS Algorithm (APV-MCTS) proposed by DeepMind is a searching algorithm used in AlphaGo that combines Monte Carlo Tree Search (MCTS) with Deep Convolutional Neural Networks (DCNN) asynchronously. With APV-MCTS and DCNN, AlphaGo successfully became the first Go AI program that defeated professional human Go players. In this thesis, we will discuss some issues of APV-MCTS, and propose General APV-MCTS (GAPV-MCTS), which is modified from APV-MCTS to improve AI programs of other games. We apply GAPV-MCTS to NoGo (a variation of Go). After tuning some parameters in GAPV-MCTS, it performs 220 ELO (77% winning rate) higher than APV-MCTS using the same DCNNs.en_US
dc.language.isoen_USen_US
dc.subject蒙地卡羅樹搜尋zh_TW
dc.subject類神經網路zh_TW
dc.subject深度卷積類神經網路zh_TW
dc.subjectMCTSen_US
dc.subjectDCNNen_US
dc.subjectAlphaGoen_US
dc.subjectAPV-MCTSen_US
dc.subjectGAPV-MCTSen_US
dc.title蒙地卡羅樹搜尋與深度卷積類神經網路之一般化結合zh_TW
dc.titleA General Approach to Combining MCTS with DCNNen_US
dc.typeThesisen_US
dc.contributor.department網路工程研究所zh_TW
Appears in Collections:Thesis