标题: | 基于地点类别转移和时间行为的连续兴趣点推荐系统 Successive POI Recommendation with Category Transition and Temporal Behavior |
作者: | 林奕呈 黄俊龙 Lin, I-Cheng Huang, Jiun-Long 资讯科学与工程研究所 |
关键字: | 连续兴趣点;推荐系统;适地性社群网路;打卡资料;兴趣点类别转移;时间影响;矩阵分解;Successive Point-of-Interest;Recommendation system;Location-based social networks;Check-in data;POI category transition;Temporal influence;Matrix Factorization |
公开日期: | 2017 |
摘要: | 智慧型装置与网路的普及加上GPS系统的快速发展,使用者能够在社群网路上利用"打卡"的动作来分享到访某个地点的经验。透过分析大量的打卡资料,可以找出使用者的偏好以及行为模式,而因此提供很大的商机给第三方服务发展个人化的服务,例如,兴趣点 (Point-of-interest, POI) 推荐系统。兴趣点推荐至今已被广泛且深入的研究,衍伸出的连续性兴趣点推荐 (Successive POI) 在近几年由于命题较切中使用者使用情境而更被广泛探讨。但大部分的方法分析使用者连续性打卡行为都是间接考虑多项因素,而没有分析使用者和连续性打卡行为的直接关联。除此之外,大量稀疏的资料导致的效率问题也是兴趣点推荐的挑战之一。因此我们提出两层式的架构,首先,利用矩阵分解 (Matrix Factorization) 去分析使用者和使用者对于兴趣点类型的连续性打卡行为的直接关联,加上时间因素对兴趣点类型的影响,来预测使用者对于兴趣点类型的偏好。接着,把那些偏好高的兴趣点类型的兴趣点留下,然后把使用者偏好、时间影响、地理上的影响等因素结合在一起,来做最后的兴趣点推荐。在 Gowalla 打卡资料的实验结果显示,我们的推荐系统比现有的连续兴趣点推荐系统效能和效率上都更好。 With the popularization of smart device and internet and the rapid extension of GPS system, people are able to share their experience on locations in social network through "check-ins". By analysing the huge amount of check-in data, users' preferences and their behavior patterns can be investigated and hence provide a good opportunity for third party service to develop personalized service, such as, POI recommendation. POI recommendation has been widely researched these days, but successive POI recommendation which is extended from POI recommendation attracts extensive attention nowadays because the problem meets the real needs. However, most of previous works analysed users' sequential check-in behavior by indirectly considering multiple factors rather than considering the interaction between users and their sequential check-in behavior directly. Besides, the low efficiency caused by the huge amount of sparse check-in data is another challenge in POI recommendation. Therefore, we propose a two-step approach to build our recommendation system. First, we utilize Matrix Factorization technique to analyse the interaction of users and their sequential check-in behavior on POI categories directly. Combined with the impact of temporal influence on POI categories, a category list that users have more interested in is predicted. Then, after removing those POIs not in the predicted category list, we fuse user preferences, temporal influence and geographical influence into a unified POI recommendation system and finally recommend POIs to users. The experimental result on Gowalla check-in dataset shows our recommendation system is better than several state-of-the-art methods both on effectiveness and efficiency. |
URI: | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070456028 http://hdl.handle.net/11536/142936 |
显示于类别: | Thesis |