Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hwang, Ruey-Ching | en_US |
dc.contributor.author | Cheng, K. F. | en_US |
dc.contributor.author | Lee, Jack C. | en_US |
dc.date.accessioned | 2014-12-08T15:20:11Z | - |
dc.date.available | 2014-12-08T15:20:11Z | - |
dc.date.issued | 2007-08-01 | en_US |
dc.identifier.issn | 0277-6693 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1002/for.1027 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/14320 | - |
dc.description.abstract | Bankruptcy prediction methods based on a semiparametric logit model are proposed for simple random (prospective) and case-control (choice-based; retrospective) data. The unknown parameters and prediction probabilities in the model are estimated by the local likelihood approach, and the resulting estimators are analyzed through their asymptotic biases and variances. The semiparametric bankruptcy prediction methods using these two types of data are shown to be essentially equivalent. Thus our proposed prediction model can be directly applied to data sampled from the two important designs. One real data example and simulations confirm that our prediction method is more powerful than alternatives, in the sense of yielding smaller out-of-sample error rates. Copyright (C) 2007 John Wiley & Sons, Ltd. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | linear logit model | en_US |
dc.subject | out-of-sample error rate | en_US |
dc.subject | semiparametric logit model | en_US |
dc.title | A semiparametric method for predicting bankruptcy | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/for.1027 | en_US |
dc.identifier.journal | JOURNAL OF FORECASTING | en_US |
dc.citation.volume | 26 | en_US |
dc.citation.issue | 5 | en_US |
dc.citation.spage | 317 | en_US |
dc.citation.epage | 342 | en_US |
dc.contributor.department | 管理科學系 | zh_TW |
dc.contributor.department | 資訊管理與財務金融系 註:原資管所+財金所 | zh_TW |
dc.contributor.department | Department of Management Science | en_US |
dc.contributor.department | Department of Information Management and Finance | en_US |
dc.identifier.wosnumber | WOS:000249291600002 | - |
dc.citation.woscount | 12 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.