标题: | 高效能之涟波调变导通时间控制之降压电源转换器 High-Performance Ripple-based On-time Controlled Buck Converter |
作者: | 陈暐中 陈科宏 Chen, Wei-Chung Chen, Ke-Horng 电机工程学系 |
关键字: | 涟波调变;导通时间控制;降压电源转换器;输出涟波电压;固定操作频率;电磁干扰;等效串联电感;等效串联电阻;积层陶瓷电容;ripple-based;on-time control;buck converter;output voltage ripple;dual-mode ripple-recovered compensator (D-RRC);noise margin enhancement (NME);equivalent series resistance (ESR);equivalent series inductance (ESL);multi-layer ceramic capacitor (MLCC);optimum on-time controller;switching frequency;electromagnetic interference (EMI) |
公开日期: | 2015 |
摘要: | 本论文实现一高效能之涟波调变导通时间控制之降压电源转换器(ripple-based on-time controlled buck converter),有鉴于大电流的驱动能力与快速地暂态反应的优势,此控制方法渴望被广泛应用于可携式产品之晶片系统的电源管理模组;然而,较大输出电压涟波(output voltage ripple)与变动的操作频率(switching frequency),是目前学术产业界尚须解决的两个课题。较大输出电压涟波使得后端的先进制程电路的操作电压超过规范值,变动的操作频率降低效能并且受到电磁干扰(electromagnetic interference (EMI))。本论文为涟波调变导通时间控制提出的技术包含两个部分,第一部分为涟波重整技术(ripple reshaping technique),透过双模涟波还原补偿器(dual-mode ripple-recovered compensator (D-RRC))与杂讯边限提升电路(noise margin enhancement (NME))针对负回授的讯号做处理,使电路可接受使用较低等效串联电阻(equivalent series resistance (ESR))的输出电容,达到系统稳定的稳压效能,并且有抑制等效串联电感(equivalent series inductance (ESL))干扰的技术,将传统利用钽质输出电容(Tantalum capacitor)达到稳定的方法,替换成积层陶瓷电容(multi-layer ceramic capacitor (MLCC)),达到低输出涟波电压并且有高稳压效能的优点,同时更可以降低电容元件成本。本论文所提出的另一个技术为拟定频操作频率 (pseudo-constant switching frequency),本论文为操作频率与其寄生效应提供完整分析,透过所提出低复杂的模型设计最佳化导通时间控制器(optimum on-time controller),去除传统所需的精准的元件特性资讯与复杂的量测技术,亦在不需要固定时脉讯号(clock signal)下,于输入电压(input voltage)、输出电压(output voltage)、负载(load)的变化下,最佳化导通时间控制器可以转换等效的责任周期(duty cycle)调整最佳的导通时间长度,保持固定的操作频率。因此,本论文所提出的技术兼顾原有的大电流驱动能力与快速暂态反应的优势,并达到低涟波输出电压与固定操作频率的改良,实现高效能的涟波调变导通时间控制之降压电源转换器。在实验结果中验证涟波重整技术与拟定频操作频率的正确性与高性能,电路可容忍约1mΩ等效串联电阻保持系统稳定并产生低于6mV的低涟波输出电压,在2.5MHz的操作频率下且负载1.4安培的变化下保持低于8kHz的操作频率变化。此外,能量转换效率最高可达到超过90%,符合晶片系统电源管理模组整合的要求。 This dissertation presents a high-performance ripple-based on-time controlled buck converter. Ripple-based on-time controllers have the advantages of high current-driving capability and fast transient response, features that enable their application to the power management of system-on-a-chip (SoC) in portable devices. However, the disadvantages of large output voltage ripple and variable switching frequency (fSW) are two significant challenges for high-quality power supply. This dissertation proposes a ripple reshaping technique and an optimum on-time controller to mitigate the drawbacks. The first part of this dissertation presents a ripple reshaping technique that includes a dual-mode ripple-recovered compensator (D-RRC) and noise margin enhancement (NME) to achieve small output voltage ripples even if multilayer ceramic capacitors (MLCCs) are used. D-RRC eliminates the conventional stability problem, which is determined by the sufficiently large time constant of output capacitance and its equivalent series resistance (ESR). Therefore, the subharmonic problem can be avoided, and an MLCC with a small ESR for small output voltage ripple can be used. Moreover, NME improves robust stability by increasing the tolerance of the equivalent series inductance effect. The analysis of fSW is also presented and the parasitic resistances are all considered. A low-complexity model and an optimum on-time controller are proposed to achieve pseudo-constant fSW under different input voltage, output voltage, and loading current conditions. As a result, parasitic resistances almost have no influence and restriction on the pseudo-constant fSW. Extra clock-controlled circuits and current-sensing circuits used in conventional designs are unnecessary. Only input voltage is used to predict the optimum on-time, which indicates the reduction of pin numbers. Measurement results show that ∆fSW/fSW is only 0.32% and ∆fSW/∆ILOAD is 5.7 kHz/A in the case of a 1.4 A load current change and a 2.5 MHz fSW. Consequently, a pseudo-constant fSW with a well-defined noise spectrum strongly benefits the solution of electromagnetic interference for SoC applications. |
URI: | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070080706 http://hdl.handle.net/11536/143347 |
显示于类别: | Thesis |