标题: 基于局部二值模式与模板配对之指拼法辨识设计
Finger Spelling Recognition Design Using Local Binary Pattern and Template Matching
作者: 陈亲宁
陈永平
Chen, Chin-Ning
Chen, Yon-Ping
电控工程研究所
关键字: 指拼法辨识;局部二值模式;K值平均分类;模板配对;手势;finger spelling recognition;Local Binary Pattern;K-means Clustering;template matching;hand gesture
公开日期: 2016
摘要: 指拼法辨识是近年来被广泛应用于人机互动的一种辨识系统。本论文提出一个以色彩深度影像为基础的指拼法辨识系统,分为手掌区域侦测、特征撷取及指拼法辨识三个部分。首先利用深度资讯切割手部范围与背景,将切割完的手部资讯做进一步的手掌区域撷取;接着提出以局部二质化模式处理手掌区域之灰阶影像,产生手势纹理特征,其后再搭配主成分分析把资料从原本的大维度降维到小维度,降维的目的为有利于资料分析和减少计算时间。最后,先利用间隙统计决定各个手势的模板数量以及利用K值平均分类方法产生模板,再使用模板配对的方式做为系统分类器。从实验结果可知,本论文所提出的搭配简单的特征撷取方式与非监督式分类器所达到的辨识率可达九成八以上之辨识率。
Finger spelling recognition is a popular communication way for Human-Computer Interaction (HCI). This thesis proposes a finger spelling recognition system with high accuracy rate based on RGB-D image. The system is divided into three main parts, including hand region detection, feature extraction, and finger spelling recognition. For the hand region detection, first, utilize depth information to distinguish the hand region and background and then extract the palm region. Further, use texture operator Local Binary Pattern to extract image feature. After getting the feature, use Principal Component Analysis to reduce data dimension and decrease computational time. Finally, decide the number of templates by Gap Statistic, find the template using K-means Clustering, and classify data with Template Matching Method. The experimental results show that the combination of simple feature extraction method and unsupervised classifier has the accuracy higher than 98% in finger spelling recognition.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070360003
http://hdl.handle.net/11536/143389
显示于类别:Thesis