标题: 新型六环平面梯状分子二茚噻吩并噻吩与四环平面烷基化角形萘并双噻吩之合成、鉴定与高分子太阳能电池之应用
Ladder-type Hexacyclic Diindenothieno[3,2-b]thiophene and Four Isomeric Dialkyl Angular Shape Naphthodithiophene: Synthesis, Properties, and Applications to Polymer Solar Cells
作者: 郑胜文
郑彦如
Chneg, Sheng-Wen
Cheng, Yen-Ju
应用化学系硕博士班
关键字: 高分子太阳能电池;有机场效电晶体;低能隙共轭高分子;萘并双噻吩;Polymer Solar Cells;Organic field effect transistors;Low-band-gap Polymer;Naphthodithiophens
公开日期: 2016
摘要: 我们成功设计和合成一种含噻吩并噻吩与苯环之六环平面梯形共轭分子diindenothieno[3,2-b]thiophene (DITT),此分子结构是利用桥头碳原子将邻近的噻吩与苯环以共价键之方式相连接,形成含有两个环戊二烯之六环熔合平面梯状分子。具有刚硬且平面之DITT经修饰后成为电子予体boronic-DITT分别与不同的电子受体dibromo-2,1,3-benzothiadiazole (Br-BT) 及dibromo-4,7-di(2-thienyl)-2,1,3-benzothiadiazole (Br-DTBT) 在钯金属催化下进行Suzuki 耦合聚合反应,即可成功合成出两个交替行共轭高分子PDITTBT及PDITTDTBT。共轭高分子PDITTBT与PDITTDTBT在元件上平均达0.9 V之高VOC值,且PDITTDTBT元件效率可达到5.8%。此外,PDITTDTBT与双加成富勒烯材料DMPCBA混掺之元件表现Voc可达到单层元件结构鲜少达到之高电压值1.14 V,为一般P3HT与PCBM混掺之近两倍 (Voc ≈ 0.6 V)。因此本研究提供一个可获得高Voc却不牺牲Jsc以提升电池效率之重要思路,对于低能隙高分子设计及制作高效率电池元件有指标性的进展。
接着我们成功开发出新式合成方法,可有效率地合成出四种烷基化角形萘并双噻吩 (angular-shaped naphthodithiophene, aNDT) 之同分异构平面分子4,9--aNDT、5,10--aNDT、4,9--aNDT与5,10--aNDT,其结构中心为萘环与两端噻吩相熔合。此方法可选择性导入长碳链于萘环之内侧或外侧位置;并且烷基侧链能够使刚硬结构之aNDT溶于一般有机溶剂,大幅增加此类分子之应用性。此新型合成方法是利用低价钛金属进行之McMurry耦合去氧缩合反应与钯金属催化之Sonogashira耦合反应搭配,得到关键中间体dithienyl-ene-diyne。最后进行分子内6π电环反应,即可选择性合成出四种拥有侧链之烷基化四环平面分子aNDT。
并且本研究为首次以新型烷基化4,9--aNDT为电子给体 (aNDT-OD、aNDT-BO) 分别与不同的电子受体bis(5-bromo-4-octylthienyl)-4,7-di(2-thienyl)-2,1,3-benzothiadiazole (Br-DTBT)、bis(5-bromo-4-octylthienyl)-difluoro-benzothiadiazole (Br-DTFBT) 与dibromo-diketopyrrolopyrrole (DPP) 在钯金属催化下进行Stille聚合反应,成功合成出新型交替共轭高分子PaNDTDTBT、PaNDTDTFBT、PaNDTDPP-OD及PaNDTDPP-BO。其中PaNDTDTFBT与PC71BM混掺之异质接面太阳能电池可达光电转换效率为6.86%,且PaNDTDPP-BO电洞迁移率为0.2 cm2/V−1s−1之高效率有机场效电晶体,证明aNDT类型之低能隙高分子为理想的有机半导体材料。
最后本研究进一步透过锡化之-aNDT-C12与-aNDT-C12电子予体分别与电子受体naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole (NT) 共聚得到两个互为结构异构的D-A共聚高分子PNDTDTNT与PNDTDTNT。我们发现-aNDT与-aNDT的分子几何形状对于高分子的立体构型与固态堆叠扮演着关键角色进而影响各种物理性质,本研究经由系统性微观的分析以理解高分子巨观物理特性与元件表现。透过理论计算可以了解PNDTDTNT拥有较PNDTDTNT更加的平面特性而且高分子主链也更为直线型,因此,由2D-WAXD之分析证实PNDTDTNT在固态下可以自组装型成较多的规则性π堆叠与层间堆叠。同时在吸收光谱中也可观察到PNDTDTNT之吸收范围较PNDTDTNT红移,这是由于PNDTDTNT较强的分子间作用力与较佳的有效共轭系统所致。最终,亦由于PNDTDTNT较高程度的规性堆叠结构使其表现出较 PNDTDTNT优异的OFET电洞迁移率0.214 cm2 V−1 s−1。此外更值得一提的事, PαNDTDTNT:PC71BM所混参的异质接面太阳能电池可达到8.01%优异的效率。
We have successfully designed, synthesized and characterized a novel ladder-type multifused diindenothieno[3,2-b]thiophene (DITT) unit in which two outer phenylene subunits are covalently fastened to the central thieno[3,2-b]thiophene. The rigid and coplanar DITT building block was used as an electron donor unit and copolymerized with electron-deficient acceptors, dibromobenzothiadiazole (BT) and dibromo- dithienylbenzothiadiazole (DTBT), to tune the electronic band gaps of the copolymers for a better light harvesting ability. Moreover, these copolymers provide a deep-lying highest occupied molecular orbital (HOMO) level for obtaining polymer solar cells with a high open-circuit voltage (Voc). PDITTDTBT/PC71BM device exhibited a high Voc of 0.92 V, a Jsc of 10.71 mA/cm2 and an impressive power conversion efficiency (PCE) of 5.8% due to the much deep-lying HOMO energy level and appropriate light absorption of PDITTDTBT. This research provides a guideline of molecular engineering to obtain high Voc without sacrificing Jsc. More importantly, the PDITTDTBT blended with a bis-adduct C60 DMPCBA resulted in an extra high Voc of 1.14 V, which is almost double than the average Voc (ca. 0.6 V) derived from the P3HT/PCBM-based devices.
On the other hand, although the tetracyclic angular-shaped naphthodithiophenes (aNDTs) derivatives are an emergent building block for constructing promising semiconductor conjugated polymers, the absence of aliphatic side chains as solubilizing groups on the aNDTs greatly restricted their further application toward polymer synthesis. To create a new class of aNDT-based polymers for widespread applications in solution-processable OFETs and PSCs, side-chain engineering of the aNDT-based structures plays a pivotal role in improving solubility and optimizing electronic/steric properties associated with the resultant solar cell characteristics.
We describe a new strategy to synthesize 4,9- and 5,10-dialkylated -aNDTs as well as 4,9- and 5,10-dialkylated β-aNDTs. Four isomeric precursors with different dithienyl-ene-diyne arrangements undergo base-induced double 6-cyclization to construct the central naphthalene cores, leading to the formation of the regiospecific products. These 2,7-distannylated dialkylated aNDT-based monomers can be used for Stille cross-coupling to produce promising conjugated materials for various optoelectronic applications. For the first time, the corresponding 2,7-stannylated-4,9-dialkylated aNDT monomers were polymerized with FBT and DPP acceptors to make two new PaNDTDTFBT and PaNDTDPP donor-acceptor copolymers. The photovoltaic devices based on the PaNDTDTFBT:PC71BM blend not only showed a promising PCE of 6.52% with conventional configuration but achieved a higher PCE of 6.86% with inverted configuration. Moreover, PaNDTDPP with strong intermolecular interaction achieved a high FET hole mobility of 0.202 cm2V−1s−1.
Moreover, the distannylated -aNDT and -aNDT monomers were copolymerized with the Br-DTNT monomer by the Stille coupling to furnish two isomeric copolymers, PNDTDTNT and PNDTDTNT, respectively. The geometric shape and coplanarity of the isomeric -aNDT and -aNDT segments in the polymers play a decisive role in determining their macroscopic device performance. Theoretical calculations showed that PNDTDTNT possesses more linear polymeric backbone and higher coplanarity than PNDTDTNT. The less curved conjugated main chain facilitates stronger intermolecular - interactions, resulting in more red-shifted absorption spectra of PNDTDTNT in both solution and thin film compared to the PNDTDTNT counterpart. 2D-WAXD analysis revealed that PNDTDTNT has more ordered π-stacking and lamellar stacking than PNDTDTNT as a result of the lesser curvature of the PNDTDTNT backbone. Consistently, PNDTDTNT exhibited a greater OFET hole mobility of 0.214 cm2V−1s−1 than PNDTDTNT with a mobility of 0.038 cm2V−1s−1. More significantly, the solar cell device incorporating the PNDTDTNT:PC71BM blend delivered a superior efficiency of 8.01% that outperformed the PNDTDTNT:PC71BM-based device with a moderate PCE of 3.6%.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT079925569
http://hdl.handle.net/11536/143399
显示于类别:Thesis