Full metadata record
DC FieldValueLanguage
dc.contributor.authorChou, RYen_US
dc.date.accessioned2014-12-08T15:20:14Z-
dc.date.available2014-12-08T15:20:14Z-
dc.date.issued2006en_US
dc.identifier.issn0731-9053en_US
dc.identifier.urihttp://hdl.handle.net/11536/14380-
dc.identifier.urihttp://dx.doi.org/10.1016/S0731-9053(05)20009-9en_US
dc.description.abstractIt is shown in Chou (2005). Journal of Money, Credit and Banking, 37, 561-582 that the range can be used as a measure of volatility and the conditional autoregressive range (CARR) model performs better than generalized auto regressive conditional heteroskedasticity (GARCH) in forecasting volatilities of S&P 500 stock index. In this paper, we allow separate dynamic structures for the upward and downward ranges of asset prices to account for asymmetric behaviors in the financial market. The types of asymmetry include the trending behavior, weekday seasonality, interaction of the first two conditional moments via leverage effects, risk premiums, and volatility feedbacks. The return of the open to the max of the period is used as a measure of the upward and the downward range is defined likewise. We use the quasi-maximum likelihood estimation (QMLE) for parameter estimation. Empirical results using S&P 500 daily and weekly frequencies provide consistent evidences supporting the asymmetry in the US stock market over the period 1962/01/01-2000/08/25. The asymmetric range model also provides sharper volatility forecasts than the symmetric range model.en_US
dc.language.isoen_USen_US
dc.titleModeling the asymmetry of stock movements using price rangesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0731-9053(05)20009-9en_US
dc.identifier.journalECONOMETRIC ANALYSIS OF FINANCIAL AND ECONOMIC TIME SERIESen_US
dc.citation.volume20en_US
dc.citation.spage231en_US
dc.citation.epage257en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000236323800009-
dc.citation.woscount7-
Appears in Collections:Articles


Files in This Item:

  1. 000236323800009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.