Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Sheng-Wenen_US
dc.contributor.authorMedina, Henryen_US
dc.contributor.authorHong, Kuo-Binen_US
dc.contributor.authorWu, Chun-Chiaen_US
dc.contributor.authorQu, Yindongen_US
dc.contributor.authorManikandan, Arumugamen_US
dc.contributor.authorSu, Teng-Yuen_US
dc.contributor.authorLee, Po-Tsungen_US
dc.contributor.authorHuang, Zhi-Quanen_US
dc.contributor.authorWang, Zhimingen_US
dc.contributor.authorChuang, Feng-Chuanen_US
dc.contributor.authorKuo, Hao-Chungen_US
dc.contributor.authorChueh, Yu-Lunen_US
dc.date.accessioned2018-08-21T05:52:38Z-
dc.date.available2018-08-21T05:52:38Z-
dc.date.issued2017-09-01en_US
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsnano.7b02444en_US
dc.identifier.urihttp://hdl.handle.net/11536/143846-
dc.description.abstractIntegration of strain engineering of two-dimensional (2D) materials in order to enhance device performance is still a challenge. Here, we successfully demonstrated the thermally strained band gap engineering of transition-metal dichalcogenide bilayers by different thermal expansion coefficients between 2D materials and patterned sapphire structures, where MoS2 bilayers were chosen as the demonstrated materials. In particular, a blue shift in the band gap of the MoS2 bilayers can be tunable, displaying an extraordinary capability to drive electrons toward the electrode under the smaller driven bias, and the results were confirmed by simulation. A model to explain the thermal strain in the MoS2 bilayers during the synthesis was proposed, which enables us to precisely predict the band gap-shifted behaviors on patterned sapphire structures with different angles. Furthermore, photodetectors with enhancement of 286% and 897% based on the strained MoS2 on cone and pyramid-patterned sapphire substrates were demonstrated, respectively.en_US
dc.language.isoen_USen_US
dc.subjectchemical vapor depositionen_US
dc.subjecttransition-metal dichalcogenideen_US
dc.subjectmolybdenum disulfideen_US
dc.subjectthermal strainen_US
dc.subjectpatterned sapphire substrateen_US
dc.subjectphotodetectoren_US
dc.titleThermally Strained Band Gap Engineering of Transition-Metal Dichalcogenide Bilayers with Enhanced Light Matter Interaction toward Excellent Photodetectorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsnano.7b02444en_US
dc.identifier.journalACS NANOen_US
dc.citation.volume11en_US
dc.citation.spage8768en_US
dc.citation.epage8776en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000411918200024en_US
Appears in Collections:Articles